DEPARTMENT OF WATER AND SANITATION

NO. 1625 17 December 2021

NATIONAL WATER ACT, 1998 (ACT NO. 36 OF 1998)

PROPOSED RESERVE DETERMINATION OF WATER RESOURCES FOR THE MZIMVUBU CATCHMENT

I, Senzo Mchunu, Minister of Water and Sanitation, hereby in terms of section 16(3) of the National Water Act, 1998 (Act No.36 of 1998) hereby publish for public comments the proposed Reserve of the water resources for the Mzimvubu catchment area, as set out in the Schedule.

Any person who wishes to submit written comments with regard to the proposed Reserve should submit their comments within 60 days from the date of publication of this Notice to:

Director: Reserve Determination
Attention: Mr Atwaru Yakeen
Department of Water and Sanitation
Ndinaye Building 178 Francis Baard Street
Private Bag X313
Pretoria
0001

Email: Atwaruy@dws.gov.za

MR SENZO MCHUNU. MP

MINISTER OF WATER AND SANITATION

DATE: 22/10/2021

No. 45649 273

SCHEDULE

PROPOSED RESERVE OF WATER RESOURCES FOR THE MZIMVUBU CATCHMENT IN TERMS OF SECTION 16(1) AND (2) OF THE NATIONAL WATER ACT, 1998 (ACT NO. 36 OF 1998)

DESCRIPTION OF WATER RESOURCE

1. (1) The Reserve is determined for all or part of every significant water resource within the Mzimvubu catchment as set out below:

Catchment:

Mzimvubu

Drainage areas:

Secondary drainage area T3 (Mzimvubu)

River(s) and estuary:

Major rivers include the Mzimvubu, Mzintlava, Thina, Kinira,

Tsitsa and Inxu (Wildebees) rivers, and the Mzimvubu

Estuary

- (2) The Minister has in terms of section 12 of the National Water Act, 1998 (Act No.36 of 1998) ("the Act"), prescribed a system for classifying water resources by issuing Government Notice No. R. 810, published in Government *Gazette* No. 33541 dated 17 September 2010. In terms of section 16(1) of the Act, the Minister must, as soon as reasonably practicable after the class of all or part of a water resource has been determined, by Notice in the *Gazette*, determine the Reserve for all or part of that water resource.
- (3) The Minister, in terms of section 16(3) of the Act, proposes, for the purpose of section 16(1) of the Act, the following Reserve determination for the Mzimvubu catchment.

2. ACRONYMS AND DEFINITIONS

2.1 Acronyms

BAS	Best attainable state	
BHN	Basic Human Needs	
CAWC	Co-ordinated Water Bird Counts	
CBA	Critical Biodiversity Areas	
EC	Ecological Category	
EcoSpecs	Ecological Specifications	
EIA	Environmental Impact Assessment	
EIS	Ecological Importance and Sensitivity	
ESA	Ecological Support Areas	
EWR	Ecological Water Requirement	
GRAII	Groundwater Resource Assessment Phase II	
GRDM	Groundwater Reserve Determination Methodology	
GRUs	Groundwater Resource Units	
MAR	Mean Annual Runoff	
MCM	Million Cubic Metres	
PES	Present Ecological Status	
REC	Recommended Ecological Category	
TEC	Target Ecological Category	
TPCs	Thresholds of Potential Concern	
WUL	Water Use Licence	

2.1 Definitions

Baseflow is a sustained low flow in rivers during dry or fair weather conditions, but not necessarily all contributed by groundwater; and includes contribution from delayed interflow and groundwater discharge.

Ecological Importance and Sensitivity (EIS): Key indicators in the ecological classification of water resources. Ecological importance relates to the presence, representativeness and diversity of species of biota and habitat. Ecological sensitivity relates to the vulnerability of the habitat and biota to modifications that may occur in flows, water levels and physico-chemical conditions.

Ecological Water Requirements (EWR): The flow patterns (magnitude, timing and duration) and water quality needed to maintain a riverine ecosystem in a particular condition. This term is used to refer to both the quantity and quality components.

Ecological Water Requirement (EWR) Sites: Specific points on the river as determined through the site selection process. An EWR site consists of a length of river which may consist of various cross-sections for both hydraulic and ecological purposes. These sites provide sufficient indicators to assess environmental flows and assess the condition of biophysical components (drivers such as hydrology, geomorphology and physico-chemical) and biological responses (viz. fish, invertebrates and riparian vegetation).

Present Ecological State (PES): A category indicating the current health or integrity of various biological attributes of the water resource, compared to the natural or close to natural reference conditions. The results of the process are provided as Ecological Categories (ECs) ranging from A (near natural) to F (completely modified) for the PES.

Recharge is the addition of water to the zone of saturation, either by downward percolation of precipitation or surface water and/ or the lateral migration of groundwater from adjacent aquifers.

Recommended Ecological Category (REC): An ecological category indicating the ecological management target for a water resource based on its ecological classification that should be attained. Categories range from Category A (unmodified, natural) to Category D (largely modified).

River Node (biophysical node): These are modelling point's representative of an upstream reach or area of an aquatic eco-system (rivers, wetlands, estuaries and groundwater) for which a suite of relationships apply.

Sub-quaternary catchments: A finer subdivision of the quaternary catchments (the catchment areas of tributaries of main stem rivers in quaternary catchments).

Target Ecological Category (TEC): Means the assigned ecological condition by the Minister to a water resource that reflects the ecological condition of that water resource in terms of the deviation of its biophysical components from the natural reference condition. The ultimate target being to achieve a sustainable system both ecologically and economically taking into account the PES and REC.

No. 45649 **275**

PROPOSED RESERVE DETERMINATION AS REQUIRED IN TERMS OF SECTION 16(1) AND (2) OF THE NATIONAL WATER ACT, 1998

- 3. (1) A summary of the quantity component for the Rivers which include the EWR (Figure 1) and the BHN in terms of section 16(1) of the Act for the Mzimvubu catchment is set out in Section 4. Table 4.1 includes the results of the priority sites.
 - (2) A summary of the quality component for the River at EWR sites in terms of section 16(1) of the Act for the Mzimvubu catchment is set out in **Table 5.1-5.5**.
 - (3) A summary of the wetland component in terms of section 16(1) of the Act for the Mzimvubu catchment is set out in **Table 6.1-6.5**.
 - (4) A summary of the Estuary component in terms of section 16(1) of the Act for the Mzimvubu catchment is set out in **Table 7.1-7.2**.
 - (5) A summary of the groundwater contribution to the Reserve for Water Quantity in terms of section 16(1) of the Act for the Mzimvubu catchment is set out in **Table 8.1**
 - (6) A summary of the groundwater contribution to the Reserve for Water Quality in terms of section 16(1) of the Act for the Mzimvubu catchments is set out in **Table 9.1 9.3**.
 - (7) The Reserve will apply from the date signed off as determined in terms of Section 16(1) of the Act, unless otherwise specified by the Minister.

4. SURFACE-WATER - RIVER QUANTITY COMPONENT

Proposed results for the Reserve determination and ecological categorisation for the Mzimvubu catchment, where the Reserve amounts are expressed as a percentage of the NMAR for the respective catchments (cumulative) in terms of section (16)(1).

Table 4.1: Summary of the quantity component for the Rivers which include the EWR & BHN for the priority sites

Quaternary	RU Node	River	PES	REC	Mean Annual Runoff (10 ⁶ m ³)	BHN Mm³/a @ 25L ppd
T31A	T31-1	Mzimvubu	B/C	B/C	32.73	0.008
T31B	T31-2	Krom	В	B/C	31.33	0.008
T31C	T31-3	Mzimvubu	В	В	87.01	0.006
T31C	T31-4	Nyongo	С	С	8.92	0.053
T31D	T31-5	Mzimvubu	В	В	104.92	0.013
T31D	T31-6	Riet	С	С	13.98	0.006
T31E	T31-7	Tswereka	В	В	12.78	0.015
T31E	T31-8	Tswereka	B/C	B/C	29.55	0.092
T31E	T31-9	Unknown	С	С	4	0.001
T31F	T31-11	Unknown	B/C	B/C	3.71	0.001
T31F	T31-12 ¹	Mzimvubu	С	С	190.45	0
T31G	T31-13 ¹	Mzimvubu	B/C	B/C	217.82	0.01
T31H	T31-14	Mvenyane	В	В	23.98	0.003
T31H	T31-15	Mvenyane	B/C	B/C	40.83	0.044
T31H	T31-16	Mkemane	В	В	13.61	0.027
T31H	T31-17	Unknown	С	С	1.3	0.005
T31H	T31-18	Mkemane	C/D	C/D	64.81	0.025
T31J	T31-19 ¹	Mzimvubu	B/C	B/C	335.66	2
T32A	T32-1	Mzintlava	С	B/C	9.46	0.007
T32A	T32-2	Mzintlava	С	С	37.6	0.004
T32B	T32-3	Mzintlava	С	B/C	11.08	0.019
T32C	T32-4	Mill Stream	С	B/C	4.26	0.002
T32C	T32-5	aManzamnyama	B/C	B/C	13.86	0.012
T32C	T32-6	Mzintlava	В	В	86.17	0.021
T32C	T32-7	Unknown	B/C	B/C	8.53	0
T32D	T32-8	Droewig	С	С	18.43	0.007
T32D	T32-9	Mzintlava	D	D	98.14	0.002
T32D	T32-10	Mzintlava	D	D	134.49	0.019
T32E	T32-11 ¹	Mvalweni	C/D	C/D	223.24	0.107
T32F	T32	Mzintlava	C/D	C/D	223.24	0.304
T32G	T32-12	Mzintlavana	B/C	B/C	57.16	0.247
T32H	T32-13 ¹	Mzintlava	С	С	348.86	0.364
T33A	T33-1	Mafube	В	В	20.45	0.006
T33A	T33-2	Kinira	B/C	B/C	26.29	0.129
T33A	T33-3	Unknown	С	С	97.37	0.021
T33B	T33-4	Jordan	В	В	33.94	0.02

STAATSKOERANT, 17 DESEMBER 2021

Quaternary	RU Node	River	PES	REC	Mean Annual Runoff (10 ⁶ m ³)	BHN Mm³/a @ 25L ppd
T33B	T33-5	Seeta	B/C	B/C	69.76	0.032
T33B	T33-6	Mosenene	С	С	94.27	0.012
T33C	T33-7 ¹	Morulane	С	С	36.158	0.102
T33D	T33-7 ¹	Kinira	С	С	302.96	0.11
T33E	T33-8	Somabadi	С	С	6.17	0.024
T33F	T33-9 ¹	Kinira	С	С	368.32	0.038
T33F	T33-10	Ncome	С	С	15.58	0.031
T33G	MRU Kinira (MzimEWR3)	Kinira	С	С	407.12	0.158
T33G	T33-11	Cabazi	С	С	14.01	0.044
T33H	T33-12	Mnceba	С	С	17.05	0.113
T33H	T33-13	Caba	С	С	9.22	0.065
T34A	T34-2	Thina	В	В	32.91	0
T34A	T34-3	Thina	B/C	B/C	41.14	0.027
T34B	T34-4	Phiri-e-ntso	В	В	68.08	0.01
T34B	T34	Thina	В	A/B	95.826	0.048
T34C	T34-1	Phinari	В	В	33.59	0.009
T34D	T34-5	Thina	С	С	123.48	0.054
T34D	T34-6	Tokwana	С	С	20.35	0.129
T34E	T34-7	Luzi	В	В	45.2	0.001
T34F	T34-8	Luzi	B/C	B/C	84.7	0.048
T34G	T34-9	Nxaxa	В	В	27.13	0.055
T34H	T34-10	Tsilithwa	В	В	20.07	0.039
T34H	T34-11	Ngcothi	В	В	11.86	0.037
T34H	T34-12	Ngcibira	С	С	18.25	0.02
T34K	MRU Thina_C (MzimEWR2)	Thina	С	С	404.51	0.356
T35A	T35-1	Tsitsa	В	В	101.14	0.008
T35B	T35-2	Pot	В	В	79.71	0.002
T35C	T35-3	Klein-Mooi	В	В	63.69	0.001
T35D	T35-4	Mooi	С	С	127.57	0.012
T35E	T35-5	Gqukunqa	В	В	46.09	0.049
T35F	T35-6	Inxu	В	В	37.64	0.001
T35G	T35-7	Gqaqala	В	В	26.15	0.02
T35F	T35-8	Kuntombizininzi	В	В	14.29	0.001
T35G	MRU Gat IFR12	Gatberg	B/C	В	10.9	3
T35H	MRU Inxu EWR 1 ²	Inxu	B/C	B/C	44.38	0.099
T35H	T35-9	KuNgindi	B/C	B/C	35.07	0.002
T35H	T35-10	Qwakele	С	С	19.87	0.026
T35J	T35-11	Ncolosi	C/D	C/D	29.76	0.1
T35K	T35-12	Culunca	С	С	18.12	0.054
T35K	T35-13	Tyira	C/D	C/D	14.72	0.046

No. 45649 **277**

GOVERNMENT GAZETTE, 17 DECEMBER 2021

Quaternary	RU Node	River	PES	REC	Mean Annual Runoff (10 ⁶ m ³)	BHN Mm³/a @ 25L ppd
T35K	T35-14	Xokonxa	С	С	36.24	0.093
T35K	MRU Tsitsa Ca (MzimEWR1)	Tsitsa	С	С	438.04	0.038
T35L	T35-15	Ngcolora	С	С	10.19	0.02
T35M	T35-16	Ruze	В	В	13.52	0.029
T36A	T36-1	Mzintshana	В	В	14.34	0.087
T36A	T36-2	Mkata	В	В	9.78	0.073
T36A	MRU Mzim (MzimEWR4)	Mzimvubu	С	С	2655.13	0.133

NMAR is the Natural Mean Annual Runoff.

1) 2) 3) 4) This amount represents the long term mean based on the NMAR. If the NMAR changes, this volume will also change.

Represents the percentage of BHN.

The total Reserve amount accounts for both the Ecological Reserve and the Basic Human Needs Reserve (BHN).

5. SURFACE-WATER – RIVER QUALITY COMPONENT

Summary of the Quality component at EWR sites

5.1. Water quality assessment for MzimEWR1 on the Tsitsa River

		Water Quality Monitoring Points				
River	Tsitsa	RC	Benchmark tables (DWAF 2008) T3H006Q01 (n = 136-180 2000-2016)			
EWR Site	MzimEWR1	PES				
	Parameter / units	PES value	Ecological Category / comment			
	Sulphate as SO ₄	13.4				
	Sodium as Na	13.0	Incomenia celli comence de la			
Inorganic salt	Magnesium as Mg	9.03	Inorganic salt assessment no			
ions (mg/L)	Calcium as Ca	18.10	triggered due to low Electrica			
, ,	Chloride as Cl	13.15	Conductivity levels			
	Potassium as K	2.54				
Electrical conductivity	mS/m	22.84	А			
	SRP-P	0.012	В			
Nutrients (mg/L)	TIN-N	0.146	Α			
	pH (5 th and 95 th % tiles)	7.3 + 8.28	В			
	Temperature (° C)	~	Natural temperature range expected. Supported by data from Madikizela et al., 2001.			
Physical variables	Dissolved oxygen (mg/L)	-	Natural oxygen range expecte Supported by data fro Madikizela et al., 2001.			
	Turbidity (NTU)	114: 95 th percentile 54: 50 th percentile (n=4; 2015-2016)	Moderate – Large chang Erosion and urban rund processes are known causes unnaturally large increases sediment loads and turbidity.			
	Chl-a: phytoplankton (ug/L)	-				
Response variable	Macroinvertebrate score (MIRAI) SASS score ASPT score	72.91%	С			
	Diatoms	SPI=15.7 (n=4)	В			
	Fish score (FRAI)	68.3%	С			
Toxics (mg/L)	Ammonia (as N)	0.01	A			
	site classification (from	PAI table)	B (86.4%)			

5.2. Water quality assessment for MzimEWR2 on the Thina River

River	Thina	Water Quality Monitoring Points				
Kivel	TIIIII	RC	Benchmark tables (DWAF, 2008)			
EWR Site	MzimEWR2	PES	T3H005Q01 (n = 135-188; 2000-2016)			
	Parameter / units	PES value	Ecological Category / comment			
	Sulphate as SO ₄	10.87				
Inorganic salt	Sodium as Na	9.17	Increasis call accessor at a st			
	Magnesium as Mg	7.36	Inorganic salt assessment not			
ions (mg/L)	Calcium as Ca	15.33	triggered due to low Electrical Conductivity levels			
	Chloride as Cl	8.01	Conductivity levels			
	Potassium as K	2.42				
Electrical conductivity	mS/m	18.7	A			
Mutrianta (ma/l.)	SRP-P	0.014	В			
Nutrients (mg/L)	TIN-N	0.146	A			
	pH (5 th and 95 th % tiles)	7.23 + 8.25	В			
	Temperature (° C)	-	Natural temperature range expected. Supported by data from Madikizela et al., 2001.			
Physical variables	Dissolved oxygen (mg/L)	-	Natural oxygen range expected. Supported by data from Madikizela et al., 2001.			
	Turbidity (NTU)	-	Moderate changes to the catchmen land-use have resulted in unnaturally high sediment loads and high turbidities during runoff events.			
	Chl-a: phytoplankton (ug/L)	-				
Response variable	Macroinvertebrate score (MIRAI) SASS score ASPT score	76.56%	С			
	Diatoms	SPI=17.8 (n=1)	Modified to a B category as dominant population suggests a recent high flow event			
	Fish score (FRAI)	78.4%	B/C			
Toyice (mg/L)	Ammonia (as N)	0.018	В			
Toxics (mg/L)	Fluoride (F)	0.485	A			
Overall si	te classification (from F	PAI table)	B (85.5%)			

No. 45649 **281**

5.3. Water quality assessment for Mzim EWR3 on the Kinira River

Discon	Kinira	Water Quality Monitoring Points				
River	Milia	RC	Benchmark tables (DWAF, 2008)			
EWR Site	MzimEWR3	PES	T3H019Q01 (<i>n</i> = 72-94; 2007-2016)			
	Parameter / units	PES value	Ecological Category / comment			
	Sulphate as SO ₄	7.08				
Inorganic salt	Sodium as Na	18.74	I			
	Magnesium as Mg	14.29	Inorganic salt assessment not			
ions (mg/L)	Calcium as Ca	32.71	triggered due to low Electrical Conductivity levels			
	Chloride as Cl	9.50	Conductivity levels			
	Potassium as K	2.82				
Electrical conductivity	mS/m	32.11	A/B			
	SRP-P	0.010	В			
Nutrients (mg/L)	TIN-N	0.10	A			
	pH (5 th and 95 th % tiles)	7.36 + 8.53	В			
	Temperature (° C)	-	Natural temperature range expected.			
Physical	Dissolved oxygen (mg/L)	-	Natural oxygen range expected.			
variables	Turbidity (NTU)		Serious changes due to serious erosion problems. Increased turbidity levels are present most of the time, with large silt loads deposited and a serious reduction in habitat.			
	Chl-a: phytoplankton (ug/L)	-				
Response variable	Macroinvertebrate score (MIRAI) SASS score ASPT score	74.68%	С			
	Diatoms	SPI=14.5 (n=1)	B/C: Diatoms growing in conditions of reduced light penetration (i.e. high turbidity), were present in the sample.			
	Fish score (FRAI)	62.7%	С			
Tardes (m==0.)	Ammonia (as N)	0.012	A/B			
Toxics (mg/L)	Fluoride (F)	0.514	A			
Overall si	te classification (from I	PAI table)	B/C (81.8%)			

5.4. Water quality assessment for MzimEWR4 on the Mzimvubu River

Mzimwuhu	Water Quality Monitoring Points				
IVIZITTVUDU	RC	Benchmark tables (DWAF, 2008)			
MzimEWR4	PES	T3H020Q01 (<i>n</i> = 69-73; 2000-2016)			
Parameter / units	PES value	Ecological Category / comment			
Sulphate as SO ₄	7.33				
Sodium as Na	19.52	Inorgania polt concentration			
Magnesium as Mg	13.67	Inorganic salt assessment not triggered due to low Electrical			
Calcium as Ca	19.93	Conductivity levels			
Chloride as Cl	15.87	Conductivity levels			
Potassium as K	2.70				
mS/m	28.44	A			
SRP-P	0.006	A/B			
TIN-N	0.100	A			
pH (5 th and 95 th % tiles)	7.43 + 8.32	В			
Temperature (° C)	-	Natural temperature range expected.			
Dissolved oxygen (mg/L)	-	Natural oxygen range expected.			
Turbidity (NTU)	-	Although there are severe erosion problems in the upper catchments, the impact has been classified as Moderate due to the size of the river system which moderates the impact, and the naturally turbid state of the Mzimvubu River. Moderate changes imply that catchment land-use have resulted in unnaturally high sediment loads and high turbidities during runoff events.			
(ug/L)	-				
Macroinvertebrate score (MIRAI) SASS score ASPT score	74.10%	С			
Diatoms	SPI=17.0 (n=1)	B: Dominant species suggest flows recently elevated, and diatoms growing in conditions of reduced light penetration (i.e. high turbidity), were present in the sample.			
Fish score (FRAI)	76.1%	C			
Ammonia (as N)	0.006	A			
	Parameter / units Sulphate as SO4 Sodium as Na Magnesium as Mg Calcium as Ca Chloride as CI Potassium as K mS/m SRP-P TIN-N pH (5 th and 95th % tiles) Temperature (° C) Dissolved oxygen (mg/L) Turbidity (NTU) Chl-a: phytoplankton (ug/L) Macroinvertebrate score (MIRAI) SASS score ASPT score	MzimEWR4 PES Parameter / units PES value Sulphate as SO4 7.33 Sodium as Na 19.52 Magnesium as Mg 13.67 Calcium as Ca 19.93 Chloride as Cl 15.87 Potassium as K 2.70 mS/m 28.44 SRP-P 0.006 TIN-N 0.100 pH (5 th and 95th % tiles) 7.43 + 8.32 Temperature (° C) - Dissolved oxygen (mg/L) - Turbidity (NTU) - Chl-a: phytoplankton (ug/L) - Macroinvertebrate score (MIRAI) 74.10% SASS score ASPT score 74.10% Diatoms SPI=17.0 (n=1)			

Summary of the Quality component at Desktop level

Table 5.5. Desktop Water quality assessments

	Quaternary catchment	RU	Water resource	Component	Sub- Component	Indicator	Ecospecs PES and REC
		RU T32-6:		River Water Qualtiy	Nutrients	Orthophosphate	50th percentile of the data must be less than 0.025 mg/L PO ₄ -P (aquatic ecosystems: driver).
IUA T32 a:	T32C	T32C-05273	Mzintlava	River Water Qualtiy	Toxics		95 th percentile of the data must be within the TWQR for toxics. Numerical limits can be found in DWAF (1996) and DWAF (2008).
Mzintlava	T32C,	RU T32-9:		River Water Qualtiy	Nutrients	Orthophosphate	50th percentile of the data must be less than 0.125 mg/L PO ₄ -P (aquatic ecosystems: driver).
	T32D	T32D-05352	Mzintlava	River Water Qualtiy	Toxics	8	95 th percentile of the data must be within the TWQR for toxics. Numerical limits can be found in DWAF (1996) and DWAF (2008).
				River Water Quality	Nutrients	Orthophosphate	50th percentile of the data must be less than 0.125 mg/L PO ₄ -P (aquatic ecosystems: driver).
IUA T32_b: Mzintlava	T32D	RU T32-10: T32D-05373	Mzintlava	River Water Quality	Toxics	- 4	95 th percentile of the data must be within the TWQR for toxics. Numerical limits can be found in DWAF (1996) and DWAF (2008).
				River Water Quality	Salts	Electrical conductivity	95th percentile of the data must be less than or equal to 55 mS/m (aquatic ecosystems: driver).
		RU T32-11: T32F-05464	Mvalweni	River Water Quality	Nutrients	Orthophosphate	50th percentile of the data must be less than 0.125 mg/L PO ₄ -P (aquatic ecosystems: driver).
				River Water Quality	Nutrients	Total Inorganic Nitrogen	50th percentile of the data must be less than 1.0 mg/L TIN-N (aquatic ecosystems: driver).
	T32E, T32F			River Water Quality	Toxics		95 th percentile of the data must be within the TWQR for toxics. Numerical limits can be found in DWAF (1996) and DWAF (2008).
				River Water Quality	Salts	Electrical conductivity	95th percentile of the data must be less than or equal to 30 mS/m (aquatic ecosystems: driver).
IUA T33_a: Kinira	T33A	RU T33-3: T33A-04990, T33A-04991	Kinira	River Water Quality	Nutrients	Orthophosphate	50th percentile of the data must be less than 0.025 mg/L PO ₄ -P (aquatic ecosystems: driver).
IUA T33_b: Kinira	T33G	MRU Kinira (MzimEWR3): T33E-05213, T33F-05326, T33G-05395	Kinira	River Water Quality	Suspended sediments	Turbidity/clarity or TSS levels	A large change from natural with erosion being a known cause of unnaturally large increases in sediment loads and turbidity. Habitat often silted but clears (aquatic ecosystems: driver).

	Quaternary catchment	RU	Water resource	Component	Sub- Component	Indicator	Ecospecs PES and REC		
IUA To 4	TO AD	RU T34-6:		River Water Quality	Nutrients	Orthophosphate	50th percentile of the data must be less than 0.025 mg/L PO ₄ -P (aquatic ecosystems: driver).		
T34_b: Thina	T34D	T34D-05463	Tokwana		Toxics		95th percentile of the data must be within the TWQR for toxics. Numerical limits can be found in DWAF (1996) and DWAF (2008).		
IUA T34_b: Thina	T34J, T34K	MRU Thina_C (MzimEWR2): T34H-05772, T34H-05838, T34K-05835	Thina		Nutrients	Orthophosphate	50 th percentile of the data must be less than 0.025 mg/L (aquatic ecosystems: driver).		
IUA	T35C,	RU T35-4:		River Water Quality	Nutrients	Orthophosphate	50th percentile of the data must be less than 0.025 mg/L PO ₄ -P (aquatic ecosystems; driver).		
T35_a: Tsitsa	T35D	T35C-05874	Mooi		Toxics		95 th percentile of the data must be within the TWQR for toxics. Numerical limits can be found in DWAF (1996) and DWAF (2008).		
IUA	MRU Inxu					River Water Quality	Nutrients	Orthophosphate	50th percentile of the data must be less than 0.075 mg/L PO ₄ -P (aquatic ecosystems: driver).
T35_b: Tsitsa	T35H	(EWR1): T35F- 06020	Inxu		Toxics		95 th percentile of the data must be within the TWQR for toxics. Numerical limits can be found in DWAF (1996) and DWAF (2008).		
IUA		RU T35-14: T35K-06167 Xokonxa		River Water Quality	Nutrients	Orthophosphate	50th percentile of the data must be less than 0.125 mg/L PO ₄ -P (aquatic ecosystems: driver)		
T35_c: Tsitsa	T35K				Toxics		95 th percentile of the data must be within the TWQR for toxics. Numerical limits can be found in DWAF (1996) and DWAF (2008).		
IUA T35_d: Tsitsa	T35K	MRU Tsitsa_Ca (MzimEWR1): T35E-05977, T35K-06037, T35K-06098, T35L-05976	Tsitsa	River Water Quality	Nutrients	Orthophosphate	50 th percentile of the data must be less than 0.015 mg/L (aquatic ecosystems: driver).		
IUA T36_a: Mzimvubu	T36A	MRU Mzim (MzimEWR4): T36A-06250, T36A-06354, T36B-06391	Mzimvubu	River Water Quality	Suspended sediments	Turbidity/clarity or TSS levels	Moderate changes from natural with temporary high sediment loads and turbidity during runoff events. Urban activities and land-use have resulted in high sediment loads		

6. SURFACE-WATER – WETLANDS COMPONETS

Summary of the Wetlands assessment

6.1. Desktop Wetland and Ecoclassification

SQ Code	Name	PES	Wetland El	Wetland ES	RES
T31A-04712	Mzimvubu	С	HIGH	LOW	B/C
T31B-04745	Krom	В	HIGH	MODERATE	B/C
T31B-04868	Krom	В	VERY HIGH	MODERATE	Α
T31B-04873	Name unknown	В	VERY HIGH	MODERATE	Α
T31C-04796	Mngeni	С	HIGH	MODERATE	B/C
T31C-04866	Mzimvubu	B/C	MODERATE	MODERATE	B/C
T31C-04879	Nyongo	С	MODERATE	VERY HIGH	С
T31D-04926	Mzimvubu	С	HIGH	MODERATE	С
T31D-04936	Riet	B/C	VERY HIGH	MODERATE	Α
T31D-05030	Riet	С	HIGH	LOW	B/C
T31D-05060	Mzimvubu	D	HIGH	MODERATE	С
T31D-05076	Mzimvubu	С	VERY HIGH	VERY LOW	В
T31E-04836	Tswereka	В	HIGH	MODERATE	B/C
T31E-04910	Malithasana	D	HIGH	MODERATE	C/D
T33D-05063	Kinira	D	VERY HIGH	VERY LOW	С
T33D-05106	Pabatlong	C/D	HIGH	VERY HIGH	С
T33D-05150	Kinira	C/D	HIGH	LOW	С
T33E-05213	Kinira	C/D	HIGH	MODERATE	С
T33E-05367	Somabadi	C/D	MODERATE	VERY HIGH	C/D
T33F-05285	Rolo	D	MODERATE	VERY LOW	D
T33F-05326	Kinira	C/D	HIGH	VERY LOW	С
T33F-05398	Kinira	C/D	HIGH	VERY LOW	С
T33F-05439	Ncome	C/D	MODERATE	VERY LOW	C/D
T33G-05395.	Kinira	C/D	HIGH	LOW	С
T33G-05587	Cabazi	C/D	MODERATE	HIGH	С
T33G-05659	Mzimvubu	В	MODERATE	MODERATE	В
T33H-05638	Mnceba	С	MODERATE	VERY HIGH	С
T33H-05680	Mzimvubu	С	MODERATE	LOW	С
T33H-05803	Caba	C/D	HIGH	MODERATE	С
T33H-05821	Mzimvubu	С	MODERATE	MODERATE	С
T33J-05834	Mzimvubu	С	MODERATE	LOW	С
T34A-05394	Vuvu	B/C	HIGH	HIGH	В
T34A-05404	Thina	С	HIGH	VERY LOW	B/C
T34A-05408	Khohlong	С	HIGH	VERY LOW	B/C
T34A-05415	Thina	B/C	HIGH	VERY LOW	В
T34B-05269	Nxotshana	B/C	HIGH	VERY LOW	В
T34B-05275	Phiri-e-ntso	B/C	HIGH	VERY LOW	В
T34B-05351	Thina	C/D	HIGH	VERY LOW	С
T34B-05356	Thina	C/D	HIGH	LOW	С
T34B-05385	Thina	C/D	HIGH	VERY LOW	C
T34C-05168	Tinana	В	HIGH	VERY LOW	A/B
T34C-05292	Tinana	С	MODERATE	LOW	С

T34D-05412	Thina	С	HIGH	LOW	B/C
T34D-05460	Thina Products as	D	HIGH	LOW	C/D
T34E-05495	Bradgate se Loop	B/C	HIGH	VERY LOW	В
T34E-05503	Luzi	С	HIGH	VERY LOW	B/C
T34E-05507	Luzi	С	HIGH	LOW	B/C
T34F-05512	Luzi	С	HIGH	VERY LOW	B/C
T34G-05543	Thina	С	HIGH	LOW	B/C
T34G-05634	Nxaxa	C/D	VERY HIGH	LOW	С
T34G-05667	Thina	B/C	MODERATE	LOW	B/C
T34H-05598	Thina	D	HIGH	MODERATE	C/D
T34H-05772	Thina	В	HIGH	LOW	A/B
T34H-05826	Ngcothi	B/C	HIGH	LOW	В
T34K-05835	Thina	B/C	HIGH	MODERATE	В
T35A-05596	Tsitsana	B/C	HIGH	VERY LOW	В
T35A-05648	Tsitsa	В	HIGH	LOW	A/B
T35A-05750	Tsitsa	C/D	HIGH	VERY LOW	С
T35B-05709	Pot	B/C	HIGH	VERY LOW	В
T35B-05798	Pot	C/D	HIGH	LOW	С
T35B-05815	Little Pot	С	VERY HIGH	LOW	В
T35C-05858	Mooi	С	HIGH	VERY LOW	B/C
T35C-05874	Mooi	C/D	VERY HIGH	MODERATE	В
T35C-05930	Klein-Mooi	С	HIGH	VERY LOW	B/C
T35D-05721	Tsitsa	D	HIGH	LOW	C/D
T35D-05844	Mooi	В	HIGH	MODERATE	A/B
T35E-05780	Gqukunqa	В	MODERATE	VERY LOW	A/B
T35E-05908	Tsitsa	С	HIGH	MODERATE	B/C
T35E-05977	Tsitsa	С	MODERATE	HIGH	B/C
T35F-05973	Kuntombizininzi	В	VERY HIGH	MODERATE	Α
T35F-05999	Inxu	B/C	HIGH	LOW	В
T35F-06020	Inxu	D	VERY HIGH	LOW	С
T35G-06002	Inxu	С	HIGH	LOW	B/C
T35G-06021	Inxu	С	HIGH	VERY LOW	B/C
T35G-06069	Gatberg	B/C	VERY HIGH	LOW	В
T35G-06074	Gatberg	B/C	HIGH	VERY LOW	В
T35G-06099	Gatberg	B/C	VERY HIGH	LOW	В
Г35G-06100	Name unknown	С	MODERATE	VERY LOW	С
T35G-06108	Inxu	В	HIGH	LOW	A/B
T35G-06118	Gatberg	B/C	VERY HIGH	MODERATE	B/C
	Name	С			
T35G-06133	unknown		HIGH	LOW	B/C
Г35G-06135	Gqaqala	С	VERY HIGH	MODERATE	В
TOEC 00440	Name	Α	UIOU	\/ED\/ LUC!	
T35G-06148	unknown	0	HIGH	VERY HIGH	A
Г35G-06169	Ggagala Name	С	HIGH	LOW	B/C
Г35G-06179	unknown	С	HIGH	LOW	DIA
Г35H-06024	Inxu	С	MODERATE	LOW	B/C C
Г35H-06053	Inxu	С	MODERATE	MODERATE	C

STAATSKOERANT, 17 DESEMBER 2021

T35H-06186	Umnga	С	HIGH	HIGH	B/C
T35H-06240	KuNgindi	С	VERY HIGH	MODERATE	В
T35H-06282	Umnga	В	HIGH	MODERATE	A/B
T35J-06106	Ncolosi	D	MODERATE	MODERATE	D
T35K-05897	Culunca	D	MODERATE	HIGH	C/D
T35K-05904	Tyira	D	MODERATE	HIGH	C/D
T35K-06037	Tsitsa	С	MODERATE	VERY HIGH	В
T35K-06167	Xokonxa	С	HIGH	MODERATE	B/C
T35L-05976	Tsitsa	С	VERY HIGH	HIGH	В
T35L-06190	Tsitsa	В	HIGH	LOW	A/B
T35L-06226	Ngcolora	D	HIGH	HIGH	C/D
T35M-06187	Tsitsa	В	MODERATE	MODERATE	В
T35M-06275	Ruze	В	HIGH	MODERATE	A/B
T36A-06250	Mzimvubu	С	MODERATE	LOW	С
T36B-06391	Mzimvubu	C/D	VERY HIGH	MODERATE	С

No. 45649 **287**

7. SURFACE WATER: ESTUARINE COMPONENTS OF THE RESERVE

Downstream boundary: 31°37′52″ S, 29°32′59″ E (Estuary mouth)

Upstream boundary: 31°29'7.15" S, 29°22'59.66" E

Lateral boundaries: 5 m contour above mean sea level (MSL) along each bank

The PES of an estuary is assessed in terms of the degree of similarity to reference conditions. The Estuarine Health Index is used to determine the PES and corresponds to an ecological category that describes the health using six categories, ranging from natural (A) to critically modified (F). As per the EHI the different components assessed are: Abiotic components: Hydrology, physical habitat, hydrodynamics and water quality. Biotic components: Microalgae, macrophytes, invertebrates, fish and birds.

Quaternary	Water	PES	EIS	REC	NMAR
Catchment	Resource				(MCM)
T36B	Mzimvubu	В	Moderate	В	2 613.5

Table 7.2 Recommended Ecological Flow scenario for the Mzimvubu Estuary (REC – Category B)

%iles Oct Nov Dec Jan Feb Mar Apr May Jun Jul 99.9 324 449 401 611 672 970 487 391 297 314 99 279 406 392 599 619 691 374 235 295 232 95 129 275 300 446 541 526 264 81 81 103	155 143 56 37	Sep 747 272 83
99 279 406 392 599 619 691 374 235 295 232	155 143 56	747 272 83
	56	83
95 129 275 300 446 541 526 264 81 81 103		
	37	
90 92 189 254 310 508 369 174 65 47 34	3/	51
85 80 129 201 222 381 278 131 55 34 29	27	29
80 58 92 176 178 272 237 111 45 28 25	23	23
70 41 67 130 147 188 201 102 33 21 20	17	19
60 32 57 71 107 153 162 81 25 18 17	14	15
50 27 47 53 82 121 133 70 23 16 14	13	14
40 24 39 43 70 86 113 58 20 14 12	12	12
30 23 37 39 58 70 80 52 18 13 12	11	11
20 21 35 34 52 58 68 48 17 12 10	10	10
15 20 32 33 43 54 63 44 16 11 10	10	10
10 19 31 31 37 46 57 40 15 11 10	10	9
5 18 30 27 35 40 47 35 15 11 10	9	8
1 16 28 26 30 31 37 31 13 10 9	8	8

8. GROUNDWATER - QUANTITY COMPONENT

There are 51 quaternary catchments within the Mzimvubu T3 catchment. The basic human needs Reserve provides for the essential needs of individuals served by the water resource in question and includes water for drinking, food preparation and for personal hygiene. A lifeline amount of 25 litres per person per day was used. The groundwater quantity component was determined using values (i.e. recharge, baseflow and population) obtained during the determination of the groundwater Reserve study in the Mzimvubu to Keiskamma WMA - Eastern Region (DWA, 2012).

Table 8.1: The Groundwater Quantity Component of the Reserve for the Mzimvubu T3 Catchment

Quaternary	Area	Recharge	Population	Baseflow	EWR_MLF	BHN Reserve	EWR as %	BHN as %
catchment	(km²)	(Mm³/a)		(Mm³/a)	(Mm³/a)	(Mm³/a)	of Recharge	of Recharge
T31A	221.3	11.61	493	9.68	0.69	0	5.93	(
T31B	284	16.55	2903	6.18	0.42	0.03	2.55	0.18
T31C	290.6	15.25	13110	6.26	0.41	0.12	2.71	0.79
T31D	352.5	20.54	3587	5.27	0.32	0.04	1.56	0.19
T31E	508.7	26.7	12815	8.24	0.33	0.12	1.24	0.45
T31F	606.9	28.09	2188	11.89	0.29	0.02	1.05	0.07
T31G	208.4	12.14	262	6.35	0.58	0	4.77	0
T31H	616.2	35.9	29073	12.34	0.36	0.26	1.02	0.72
T31J	506.4	29.5	21943	13.68	0.5	0.2	1.69	0.68
T32A	347.1	20.23	2246	9.07	0.46	0.02	2.25	0.1
T32B	306.5	17.86	4658	9.11	0.49	0.04	2.77	0.22
T32C	372.9	21.73	39324	10.69	0.48	0.36	2.23	1.66
T32D	350.2	20.4	3405	6.02	0.33	0.03	1.61	0.15
T32E	382	22.26	32609	4.47	0.17	0.3	0.77	1.35
T32F	296	17.24	23029	4.65	0.2	0.21	1.16	1.22
T32G	437.7	25.5	42683	5.54	0.14	0.39	0.55	1.53
T32H	452.2	26.35	36169	6.32	0.17	0.33	0.64	1.25
T33A	341.4	17.92	56453	6.11	0.2	0.51	1.13	2.85
T33B	268.2	14.08	30627	6.07	0.23	0.28	1.62	1.99
T33C	237.7	12.48	17759	324	0.23	0.16	1.81	1.28
T33D	358	18.8	33472	3.84	0.22	0.3	1.19	1.6
T33E	267.1	15.56	14955	2.18	0.22	0.14	1.44	0.9
T33F	437	25.46	21162	4.88	0.21	0.19	0.83	0.75
T33G	502	29.25	29938	6.2	0.26	0.27	0.88	0.92
T33H	516	30.06	58784	4.43	0.2	0.54	0.67	1.8
T33J	456.4	25.59	38276	3.48	0.19	0.34	0.75	1.33
T33K	169.1	9.85	13409	2.16	0.22	0.12	2.24	1.22
T34A	671.9	32.27	8720	5.69	0.38	0.08	1.18	0.25
T34B	601.9	31.59	6940	5.17	0.37	0.06	1.18	0.19
T34C	366.9	19.26	9860	5.11	0.36	0.09	1.89	0.47
T34D	461	24.2	21115	7.4	0.39	0.19	1.62	0.79

290 No. 45649

GOVERNMENT GAZETTE, 17 DECEMBER 2021

Quaternary	Area	Recharge	Population	Baseflow	EWR_MLF	BHN Reserve	EWR as %	BHN as %
catchment	(km²)	(Mm³/a)		(Mm³/a)	(Mm³/a)	(Mm³/a)	of Recharge	of Recharge
T34E	241.5	12.67	3000	6.24	0.43	0	3.36	C
T34F	246.1	12.92	5627	5.49	0.39	0.05	3	0.39
T34G	281.9	14.8	14867	7.81	0.38	0.13	2.6	0.88
T34H	590.1	34.38	46605	12.59	0.45	0.42	1.3	1.22
T34J	296.3	17.26	23028	2.61	0.29	0.21	1.7	1.22
T34K	332.9	19.4	20920	2.54	0.2	0.19	1.02	0.98
T35A	475.1	24.94	10162	11.96	0.43	0.09	1.72	0.36
T35B	395.7	20.77	0	10.04	0.39	0	1.88	0
T35C	306.1	16.07	2934	9.56	0.48	0.23	2.99	1.43
T35D	347.8	18.25	8329	7.24	0.45	0.08	2.46	0.44
T35E	491.8	28.65	25094	13.11	0.43	0.22	1.51	0.77
T35F	358.7	18.83	1271	8.43	0.45	0.01	2.39	0.05
T35G	574.5	30.15	6074	10.31	0.45	0.05	1.48	0.17
T35H	519.3	27.26	27442	12.34	0.4	0.25	1.46	0.92
T35J	188.4	10.98	15134	12.44	1.17	0.39	10.61	3.55
T35K	624.8	36.4	53682	2.87	0.12	0.49	0.32	1.35
T35L	340.1	19.81	21721	2.87	0.2	0.2	0.99	1.01
T35M	304.5	17.74	20465	4.14	0.19	0.19	1.08	1.07
T36A	462	55.9	29898	11.73	0.27	0.27	0.48	0.48
Г36В	264.4	31.99	21375	1001	0.26	0.19	0.81	0.59

9. GROUNDWATER QUALITY COMPONENT

In the determinations of the groundwater quality component the ambient groundwater quality is compared to Class 1 potability value (SANS 2005). The lowest or more conservative value of the two is selected. In instances where the ambient value is selected, it is increased by 10 per cent. In instances where the ambient quality, of geological origin, exceeds the potability value the ambient water quality is used. The groundwater quality should at all times comply in all respects with the quality specifications set as per water quality guidelines contained in Table 2 below. The groundwater quality of the Mzimvubu catchment was assessed per quaternary level and the results are summarised in Table 3 below.

Table 9.1. Assessment guide for the suitability of groundwater for potable use

Chemical Parameter	Target Water Quality Ranges ¹									
	Units	Class 0	Class I	Class II	Class III					
pH (pH Units)		6-9	5-6&9-9.5	4 - 5& > 9.5 - 10	< 4 or > 10					
Total Dissolved Solids	mg/l	0 - 450	450 - 1000	1000 - 2450	> 2450					
Electrical Conductivity	mS/m	0 - 70	70 - 150	150 - 300	> 370					
Calcium as Ca	mg/l	0 - 80	80 - 150	150 - 300	> 300					
Magnesium as Mg	mg/l	0 - 30	30 - 70	70 -100	> 100					
Sodium as Na	mg/l	0 - 100	100 - 200	200 - 400	> 400					
Chloride as Cl	mg/l	0 - 100	100 - 200	200 - 600	> 600					
Sulphate as SO ₄	mg/l	0 - 200	200 - 400	400 - 600	> 600					
Nitrate as NO _x . N	mg/l	0 - 6	6 - 10	10 - 20	> 20					
Flouride as F	mg/l	0 - 1	1 - 1.5	1.5 - 3.5	> 3.5					
Faecal coliforms	counts/100ml	0	0 - 1	1 - 10	> 10					

Ref: South African Water Quality Guidelines, Volume 1: Domestic Water Use, 2nd Ed. 1996. Department of Water Affairs and Forestry. Pretoria, South Africa.

NOTE:

Class 0: Water is classed as ideal drinking water, suitable for life time use. The values are essentially the same as the target water guideline in the South African

Motor Quality Cuideline for Democtic Hee

Water Quality Guideline for Domestic Use.

Class I: Water is still safe for life time use; however some mild health effects

may, in very rare cases, occur. They may also be some aesthetic effects.

Class II: Water allowable for limited short term or emergency use. Health effects may

be felt more commonly, as compared to Class I, especially by those who are long term users of the water. Therefore, it is not recommended that the water be used continuously for life. This is only class in the guideline which is not specific in terms of the exact duration that the water can be used for. It states that it can be used for short term use; but does not define what length of time

"short term" refers to.

Class III water will cause serious health effects, particular in infants and

elderly people. Use of this water is not recommended for drinking purposes.

Table 9.2: The Groundwater Quality Component of the Reserve for the Mzimvubu T3 Catchment

Quaternary		рН	EC	Ca	Mg	Na	Tal	CI	SO4	NO3	F
catchment			(mS/m)	(mg/l)	(mg/l)						
	No of Samples	11	11	11	11	11	11	11	11	11	11
	Ambient GW Quality	8.52	41	7.11	1.2	79.66	134.62	33.01	9.2	0.04	4.08
T31A	5 percentile	8.18	37.4	5.99	0.5	74.14	125.59	26.9	5.49	0.02	2.92
	95 percentile	8.72	47.1	11.69	2.13	86.76	148.81	42.54	12.48	0.1	4.74
	GW Quality Reserve	9.37	45.1	7.82	1.32	87.62	148.08	36.31	10.12	0.04	4.48
	No of Samples	8	8	8	8	8	8	8	8	8	8
T31C	Ambient GW Quality	8.57	41.25	7.46	1.19	82.47	137.1	32.84	8.81	0.04	4.07
	5 percentile	8.18	37.95	5.88	0.69	75.36	124.92	26.48	5.74	0.02	2.9
	95 percentile	8.72	47.43	11.78	2.14	86.97	149.44	42.96	12.53	0.1	4.77
	GW Quality Reserve	9.43	45.38	8.2	1.31	90.72	150.81	36.12	9.7	0.05	4.47
	No of Samples	9	9	9	9	9	9	9	9	9	9
	Ambient GW Quality	8.62	41	7.81	1.2	79.66	134.62	33.01	9.2	0.04	4.06
T31E	5 percentile	8.18	37.32	5.88	0.5	74.4	125.14	26.62	5.48	0.02	2.91
	95 percentile	8.72	47.32	11.75	2.14	86.9	149.23	42.85	12.51	0.09	4.58
	GW Quality Reserve	9.49	45.1	8.59	1.32	87.62	148.08	36.31	10.12	11 0.04 0.02 0.1 0.04 8 0.04 0.02 0.1 0.05 9 0.04 0.02 0.09 0.04 7 0.04 0.02	4.46
	No of Samples	7	7	7	7	7	7	7	7	7	7
	Ambient GW Quality	7.62	30.5	7.1	2.7	15.54	91.61	6.09	2	0.04	0.22
T33A	5 percentile	7.04	10.5	4.07	0.73	5.73	38.41	1.5	2	0.02	0.1
	95 percentile	8.25	39.65	22.59	9.71	87.38	177.92	10.03	20.66	1.21	1.51
	GW Quality Reserve	8.38	33.55	7.81	2.97	17.09	100.77	6.7	2.2	0.04	0.24

STA
ATS
NOW MOX
RAN
JT, 17
DES
EMB
Ħ
2021

Quaternary

catchment

T33B

T33C

T33D

T34E

No of Samples

5 percentile

95 percentile

Ambient GW Quality

GW Quality Reserve

pH

11

8.45

8.15

8.71

9.3

9

8.62

8.18

8.72

9.49

11

8.52

8.18

8.72

9.37

8.52

8.17

8.72

9.37

6

EC

11

42.2

37.64

54.1

46.42

9

41

37.32

47.32

45.1

11

41

37.4

47.1

45.1

43.25

37.9

47.65

47.58

6

(mS/m)

Ca

11

7.81

5.61

11.52

8.59

7.81

5.88

11.75

8.59

11

7.11

5.99

11.69

7.82

9.02

5.88

11.84

9.92

6

9

(mg/l)

Mg

11

1.2

0.5

2.09

1.32

9

1.2

0.5

2.14

1.32

11

1.2

0.5

2.13

1.32

6

1.7

0.65

2.15

1.87

(mg/l)

Na

11

83.04

74.64

108.18

91.34

79.66

74.4

86.9

87.62

79.66

74.14

86.76

87.62

80.78

76.24

87.12

88.86

6

11

9

(mg/l)

Tal

11

137.73

126.95

160.79

151.5

134.62

125.14

149.23

148.08

134.62

125.59

148.81

148.08

135.49

124.47

145.52

149.04

6

11

9

(mg/l)

CI

11

38.6

27.74

48.47

42.46

33.01

26.62

42.85

36.31

33.01

26.9

42.54

36.31

36.96

27.3

43.3

40.66

6

11

9

(mg/l)

SO4

11

11.2

5.5

20.45

12.32

9.2

5.48

12.51

10.12

11

9.2

5.49

12.48

10.12

9.34

5.68

12.42

10.27

(mg/l)

NO3

11

0.04

0.02

0.1

0.04

0.04

0.02

0.09

0.04

0.04

0.02

0.1

0.04

0.05

0.03

0.09

0.05

6

11

9

(mg/l)

F

11

3.85

2.57

4.68

4.24

4.06

2.91

4.58

4.46

11

4.08

2.92

4.74

4.48

3.82

2.88

4.64

4.2

6

9

(mg/l)

Ž	
5	
<u>م</u>	
0	

Quaternary		pH	EC	Ca	Mg	Na	Tal	CI	SO4	NO3	F
catchment			(mS/m)	(mg/l)							
	No of Samples	4	4	4	4	4	4	4	4	4	4
	Ambient GW Quality	8.31	45.75	10.82	1.88	82.78	137.59	40.97	11.45	0.05	3.29
T34F	5 percentile	8.17	41.34	7.58	1.7	77.19	124.83	34.19	6.37	0.02	2.87
	95 percentile	8.66	47.87	11.89	2.17	87.26	146	43.6	12.51	0.07	3.99
	GW Quality Reserve	9.14	50.33	11.9	2.07	91.05	151.35	45.07	12.6	0.05	3.62
	No of Samples	4	4	4	4	4	4	4	4	4	4
T34G	Ambient GW Quality	8.31	45.75	10.82	1.88	82.78	137.59	40.97	11.45	0.05	3.29
	5 percentile	8.17	41.34	7.58	1.7	77.19	124.83	34.19	6.37	0.02	2.87
	95 percentile	8.66	47.87	11.89	2.17	87.26	146	43.6	12.51	0.07	3.99
	GW Quality Reserve	9.14	50.33	11.9	2.07	91.05	151.35	45.07	12.6	0.05	3.62
	No of Samples	3	3	3	3	3	3	3	3	3	3
	Ambient GW Quality	8.21	46	11.4	2.07	86.04	141.92	41.03	11.71	0.06	3
T35A	5 percentile	8.17	45.55	10.35	1.73	80.17	134.12	40.92	11.25	0.04	2.86
	95 percentile	8.4	47.98	11.92	2.17	87.33	146.24	43.76	12.56	0.07	3.52
	GW Quality Reserve	9.03	50.6	12.54	2.28	94.64	156.11	45.13	12.88	0.06	3.3
	No of Samples	3	3	3	3	3	3	3	3	3	3
	Ambient GW Quality	7.71	23.1	13.5	2.5	28.7	118.9	4.7	6.4	0.13	0.21
T35B	5 percentile	7.47	5.55	2.88	0.7	6.47	28.45	1.82	5.77	0.03	0.15
	95 percentile	8.28	38.31	38.61	8.26	39.59	136.54	21.8	9.55	1.86	0.28
	GW Quality Reserve	8.48	25.41	14.85	2.75	31.57	130.79	5.17	7.04	0.14	0.23

Quaternary		pH	EC	Ca	Mg	Na	Tal	CI	SO4	NO3	F
catchment			(mS/m)	(mg/l)							
	No of Samples	6	6	6	6	6	6	6	6	6	6
	Ambient GW Quality	8.52	43.25	9.02	1.7	80.78	135.49	36.96	9.34	0.05	3.82
T35C	5 percentile	8.17	37.9	5.88	0.65	76.24	124.47	27.3	5.68	0.03	2.88
	95 percentile	8.72	47.65	11.84	2.15	87.12	145.52	43.3	12.42	0.09	4.64
	GW Quality Reserve	9.37	47.58	9.92	1.87	88.86	149.04	40.66	10.27	0.05	4.2
	No of Samples	2	2	2	2	2	2	2	2	2	2
	Ambient GW Quality	8.31	46.85	11.11	1.94	83.49	139.99	40.97	12.18	0.06	3.21
T35D	5 percentile	8.22	45.64	10.32	1.72	79.91	133.93	40.92	11.75	0.06	2.88
	95 percentile	8.41	48.07	11.89	2.16	87.08	146.04	41.02	12.6	0.07	3.55
	GW Quality Reserve	9.14	51.54	12.22	2.13	91.84	153.99	45.07	13.4		3.53
	No of Samples	5	5	5	5	5	5	5	5	5	5
	Ambient GW Quality	8.62	41	7.81	1.7	82.05	137.73	33.01	7.48	0.04	4.06
T35F	5 percentile	8.17	37.72	5.8	0.62	76.2	124.24	26.94	5.64	0.02	2.88
	95 percentile	8.72	47.76	11.86	2.16	87.19	145.76	43.43	12.36	0.09	4.68
	GW Quality Reserve	9.49	45.1	8.59	1.87	90.25	151.5	36.31	8.23	0.05	4.46
	No of Samples	1	1	1	1	1	1	1	1	1	1
	Ambient GW Quality	7.71	23.1	13.5	2.5	40.8	118.9	4.7	6.4	0.13	0.29
T35G	5 percentile	7.71	23.1	13.5	2.5	40.8	118.9	4.7	6.4	0.13	0.29
	95 percentile	7.71	23.1	13.5	2.5	40.8	118.9	4.7	6.4	0.13	0.29
	GW Quality Reserve	8.48	25.41	14.85	2.75	44.88	130.79	5.17	7.04	0.14	0.32

Quaternary		pH	EC	Ca	Mg	Na	Tal	CI	SO4	NO3	F
catchment			(mS/m)	(mg/l)	(mg/l)						
	No of Samples	3	3	3	3	3	3	3	3	3	3
	Ambient GW Quality	8.62	41	7.81	1.7	82.05	137.73	33.01	7.48	0.06	4.06
Т35Н	5 percentile	8.25	40.64	7.18	1.15	77.3	124.78	32.7	5.71	0.02	2.97
	95 percentile	8.7	47.48	11.56	2.13	86.93	145.82	40.12	12.14	0.1	4.07
	GW Quality Reserve	9.49	45.1	8.59	1.87	90.25	151.5	36.31	8.23	7.48 0.06 6.71 0.02 6.14 0.1 6.23 0.06 7 7 6.46 0.83 2 0.1 6.47 5.24 6.91 0.92 6 6 6.06 1.15	4.46
	No of Samples	7	7	7	7	7	7	7	7	7	7
T31B	Ambient GW Quality	8.2	33	32.16	15.17	12.32	140.87	8.23	4.46	0.83	0.19
	5 percentile	7.96	26.44	22.23	7.65	6.98	92.25	5.81	2	0.1	0.15
	95 percentile	8.39	46.73	48.84	19.33	19.16	191.4	32.43	8.47	5.24	0.66
	GW Quality Reserve	9.02	36.3	35.37	16.69	13.55	154.96	9.05	4.91		0.21
	No of Samples	6	6	6	6	6	6	6	6	6	6
	Ambient GW Quality	8.18	37.35	34.48	15.96	12.59	144.57	11.02	4.06	1.15	0.22
T31D	5 percentile	7.96	26.03	22.59	7.49	8.06	92.05	5.82	2	0.2	0.14
	95 percentile	8.38	46.83	48.98	19.41	19.5	193.42	33.46	8.52	5.39	0.66
	GW Quality Reserve	9	41.09	37.92	17.55	13.84	159.03	12.12	4.46	3 0.06 0.02 0.1 0.06 7 0.83 0.1 5.24 0.92 6 1.15 0.2 5.39 1.26 8 0.75	0.24
	No of Samples	8	8	8	8	8	8	8	8	8	8
	Ambient GW Quality	8.21	32.85	30.67	15.17	12.59	144.49	8.16	4.93	0.75	0.22
T31G	5 percentile	7.97	24.89	22.53	7.8	7.02	92.44	5.07	2	0.11	0.15
	95 percentile	8.38	46.64	48.7	19.26	18.81	189.37	31.39	8.41	5.09	0.66
	GW Quality Reserve	9.03	36.14	33.74	16.68	13.84	158.93	8.98	5.42	0.82	0.24

Quaternary		рН	EC	Ca	Mg	Na	Tal	CI	SO4	NO3	F
catchment			(mS/m)	(mg/l)							
	No of Samples	7	7	7	7	7	7	7	7	7	7
	Ambient GW Quality	8.24	38.1	33.85	13.75	22.1	160.16	11.3	5.96	1.05	0.27
T31H	5 percentile	8.19	30.48	22.99	3.36	11.98	108.09	6.99	2.85	0.32	0.17
	95 percentile	8.36	47.39	45.51	16.02	34.6	202.03	19.99	17.25	6.85	1.14
	GW Quality Reserve	9.07	41.91	37.23	15.12	24.31	176.18	12.43	6.55	1.16	0.29
	No of Samples	9	9	9	9	9	9	9	9	9	9
	Ambient GW Quality	8.23	37.4	30.75	10.04	19.02	143.41	11.3	5.96	0.96	0.26
T31J	5 percentile	7.85	22.02	15.69	3.76	8.83	81.6	5.03	2	0.14	0.15
	95 percentile	8.35	47.12	44.92	15.81	34.03	201.57	19.36	18.99	6.8	1.12
	GW Quality Reserve	9.05	41.14	33.83	11.04	20.92	157.75	12.43	6.55	1.06	0.29
	No of Samples	11	11	11	11	11	11	11	11	11	11
	Ambient GW Quality	7.89	51.6	26.4	18.1	34.5	135.2	38.8	4.8	5.93	0.16
T32A	5 percentile	6.97	28.75	14.65	8.95	21.75	53.25	19.9	2	1.03	0.12
	95 percentile	9.06	75.2	54.1	23.8	62.15	185	107.55	9.5	11.4	0.29
	GW Quality Reserve	8.68	56.76	29.04	19.91	37.95	148.72	42.68	5.28	6.53	0.18
	No of Samples	· 13	13	13	13	13	13	13	13	13	13
	Ambient GW Quality	7.73	39.4	20.7	14.7	33.3	128.8	37.7	4.3	5.93	0.15
T32B	5 percentile	6.53	16.96	6.36	4.78	15.64	28.56	9.3	2	1.05	0.1
	95 percentile	8.99	72.04	52.04	23.14	61.34	182.52	99.6	9.5	11.31	0.28
	GW Quality Reserve	8.5	43.34	22.77	16.17	36.63	141.68	41.47	4.73	6.53	0.17

Quaternary		pH	EC	Ca	Mg	Na	Tal	CI	SO4	NO3	F
catchment			(mS/m)	(mg/l)							
	No of Samples	7	7	7	7	7	7	7	7	7	7
	Ambient GW Quality	8.08	33.2	28.41	10.32	11.4	108.42	11.69	2	0.14	0.15
T32C	5 percentile	7.53	6.4	4.41	2.7	3.36	22.59	4.49	2	0.04	0.07
	95 percentile	8.58	56.83	45.13	21.62	31.75	240.35	43.94	14.43	2.73	1.57
	GW Quality Reserve	8.88	36.52	31.26	11.35	12.54	119.26	12.86	2.2	0.16	0.16
	No of Samples	10	10	10	10	10	10	10	10	10	10
	Ambient GW Quality	8.33	39.2	34.02	10.83	22.15	154.56	9.96	6.88	1.02	0.23
T32D	5 percentile	7.95	19.05	7.96	2.01	8.29	77.75	1.5	2	0.04	0.13
	95 percentile	8.58	59.18	47.95	30.55	59.53	227.04	47.65	29.48	5.2	2.46
	GW Quality Reserve	9.17	43.12	37.42	11.91	24.37	170.01	10.95	7.56	1.13	0.26
	No of Samples	8	8	8	8	8	8	8	8	8	8
	Ambient GW Quality	8.34	40.85	35.64	16.6	20.76	174.38	10.86	6.22	1.17	0.22
T32E	5 percentile	8.21	25.25	16.54	8.15	11.24	96.37	3.12	2	0.05	0.12
	95 percentile	8.56	57.17	51.69	26.58	34.64	234.53	37.1	19.76	2.77	0.74
	GW Quality Reserve	9.17	44.94	39.2	18.26	22.84	191.82	11.95	6.84	1.29	0.25
	No of Samples	6	6	6	6	6	6	6	6	6	6
	Ambient GW Quality	7.64	30.6	7.1	3.15	22.77	124.85	6.13	2	0.12	0.27
T32F	5 percentile	7.32	11.93	4.62	0.69	10.7	41.65	1.98	2	0.03	0.11
	95 percentile	8.25	39.78	22.79	9.89	87.91	179.27	10.07	21.22	1.26	1.58
	GW Quality Reserve	8.4	33.66	7.81	3.47	25.04	137.34	6.74	2.2	0.13	0.3

'n	1
Þ	
S	
Ĉ	
Ĭ	
Š	
Ħ	İ
7	
J	
S	
₹	
Ĭ	
v	
2	

Quaternary		pH.	EC	Ca	Mg	Na	Tal	CI	SO4	NO3	F
catchment			(mS/m)	(mg/l)							
	No of Samples	8	8	8	8	8	8	8	8	8	8
	Ambient GW Quality	8.34	40.85	34.76	16.6	19.46	167.34	10.86	4.07	1.3	0.21
T32G	5 percentile	8.21	24.64	16.23	8.53	10.88	94.46	5.78	2	0.08	0.12
	95 percentile	8.57	57.8	52.94	26.96	29.62	237.03	35.74	10.86	2.79	0.49
	GW Quality Reserve	9.17	44.94	38.23	18.26	21.41	184.07	11.95	4.48	1.43	0.23
	No of Samples	3	3	3	3	3	3	3	3	3	3
	Ambient GW Quality	7.83	33.9	13.02	2.68	58.29	156.83	5	5.44	0.04	0.34
Т32Н	5 percentile	7.7	24.36	11.25	1.86	30.48	104.3	2.3	2.34	0.04	0.27
	95 percentile	8.01	34.35	15.01	3	61.67	160.86	5.83	6.89	0.18	1.58
	GW Quality Reserve	8.61	37.29	14.32	2.95	64.12	172.51	5.5	5.98	0.04	0.38
	No of Samples	4	4	4	4	4	4	4	4	4	4
	Ambient GW Quality	8.38	49.35	25.8	6.8	83.5	162.55	69.45	15.2	1.16	4.48
T33E	5 percentile	7.52	42	3.36	0.5	47.25	54.29	30.34	6.8	0.02	0.57
	95 percentile	9.01	83.9	81.14	23.39	87.63	278.3	78.99	27.51	5.09	9.4
	GW Quality Reserve	9.21	54.29	28.38	7.48	91.85	178.81	76.4	16.72	1.27	4.92
	No of Samples	5	5	5	5	5	5	5	5	5	5
	Ambient GW Quality	7.65	30.7	7.1	2.7	30	158.1	6.17	2	0.04	0.33
T33F	5 percentile	7.41	15.7	4.59	0.65	11.67	46.72	3.94	2	0.02	0.11
	95 percentile	8.25	39.9	22.99	10.07	88.45	180.62	10.12	21.77	1.32	1.64
	GW Quality Reserve	8.42	33.77	7.81	2.97	33	173.91	6.79	2.2	0.04	0.36

Quaternary		pH	EC	Ca	Mg	Na	Tal	CI	SO4	NO3	F
catchment			(mS/m)	(mg/l)							
	No of Samples	4	4	4	4	4	4	4	4	4	4
	Ambient GW Quality	8.42	49	40.6	19.27	22.03	203.98	13.86	6.52	1.98	0.23
T33G	5 percentile	8.33	39.2	33.63	10.79	20.66	150.91	11.84	2.62	0.32	0.21
	95 percentile	8.51	59.06	55.43	28.68	31.61	242.02	42.4	12.08	2.82	0.56
	GW Quality Reserve	9.26	53.9	44.66	21.2	24.24	224.38	15.25	7.17	2.18	0.26
	No of Samples	7	7	7	7	7	7	7	7	7	7
	Ambient GW Quality	8.34	44.3	40.1	20.3	20.9	215.9	13.64	6.14	1.31	0.23
Т33Н	5 percentile	8.32	35.5	32.13	11.12	12.22	145.42	6	2	0.08	0.14
	95 percentile	8.57	58.11	53.56	27.77	35.06	238.28	40.53	21.61	2.8	0.77
	GW Quality Reserve	9.18	48.73	44.11	22.33	22.99	237.49	15	6.76	1.44	0.25
	No of Samples	4	4	4	4	4	4	4	4	4	4
	Ambient GW Quality	7.93	34.15	12.03	2.22	60.17	158.9	5.05	5.45	0.08	1.03
ТЗЗЈ	5 percentile	7.71	24.89	5.76	1.68	32.02	107.22	2.45	2.52	0.04	0.27
	95 percentile	8.41	35.85	14.9	2.99	73.96	161.26	5.8	6.81	0.19	2.02
	GW Quality Reserve	8.72	37.57	13.24	2.45	66.18	174.79	5.56	5.99	0.09	1.13
	No of Samples	3	3	3	3	3	3	3	3	3	3
	Ambient GW Quality	7.83	33.9	13.02	2.68	58.29	156.83	5	5.44	0.04	0.34
T33K	5 percentile	7.7	24.36	11.25	1.86	30.48	104.3	2.3	2.34	0.04	0.27
	95 percentile	8.01	34.35	15.01	3	61.67	160.86	5.83	6.89	0.18	1.58
	GW Quality Reserve	8.61	37.29	14.32	2.95	64.12	172.51	5.5	5.98	0.04	0.38

'n	
\exists	
> >	
4	
'n	
$\bar{\Sigma}$	
\supseteq	
П	
Ŋ	
Ž	
F	
.'	
1	
$\overline{}$	
Ĭ	
ñ	
7	
<u>,</u>	
ñ	
D	
v	
Š	
ñ	
_	

Quaternary		pH	EC	Ca	Mg	Na	Tal	CI	SO4	NO3	F
catchment			(mS/m)	(mg/l)							
	No of Samples	1	1	1	1	1	1	1	1	1	1
	Ambient GW Quality	7.69	23.3	13.02	3.04	27.39	98.47	5.92	2	0.2	0.34
T34H	5 percentile	7.69	23.3	13.02	3.04	27.39	98.47	5.92	2	0.2	0.34
	95 percentile	7.69	23.3	13.02	3.04	27.39	98.47	5.92	2	0.2	0.34
	GW Quality Reserve	8.46	25.63	14.32	3.34	30.12	108.31	6.51	2.2	0.22	0.38
	No of Samples	2	2	2	2	2	2	2	2	2	2
	Ambient GW Quality	7.93	75.2	54.1	22.95	54.45	157.8	104.55	7.7	9.34	0.24
T34J	5 percentile	7.89	60.98	44.83	19.22	43.88	147	66.08	6.08	7.9	0.16
	95 percentile	7.97	89.42	63.37	26.69	65.03	168.6	143.03	9.32	10.78	0.31
	GW Quality Reserve	8.72	82.72	59.51	25.25	59.9	173.58	115.01	8.47	10.28	0.26
	No of Samples	1	1	1	1	1	1	1	1	1	1
	Ambient GW Quality	7.97	91	64.4	27.1	66.2	169.8	147.3	5.9	7.74	0.32
T34K	5 percentile	7.97	91	64.4	27.1	66.2	169.8	147.3	5.9	7.74	0.32
	95 percentile	7.97	91	64.4	27.1	66.2	169.8	147.3	5.9	7.74	0.32
	GW Quality Reserve	8.77	100.1	70.84	29.81	72.82	186.78	162.03	6.49	8.51	0.35
	No of Samples	2	2	2	2	2	2	2	2	2	2
	Ambient GW Quality	8.03	31.55	27.45	5.7	34.75	128.7	14.2	8.15	1.09	0.25
T35E	5 percentile	7.74	23.95	14.9	2.82	29.31	119.88	5.65	6.58	0.23	0.21
	95 percentile	8.31	39.16	40.01	8.58	40.2	137.52	22.75	9.73	1.96	0.29
	GW Quality Reserve	8.83	34.71	30.2	6.27	38.23	141.57	15.62	8.97	1.2	0.28

Quaternary		рН	EC	Ca	Mg	Na	Tal	CI	SO4	NO3	F
catchment			(mS/m)	(mg/l)							
	No of Samples	1	1	1	1	1	1	1	1	1	1
	Ambient GW Quality	8.3	61.6	27.1	20.2	58.6	96.9	61.5	68.6	7.93	0.62
T35J	5 percentile	8.3	61.6	27.1	20.2	58.6	96.9	61.5	68.6	7.93	0.62
	95 percentile	8.3	61.6	27.1	20.2	58.6	96.9	61.5	68.6	7.93	0.62
	GW Quality Reserve	9.13	67.76	29.81	22.22	64.46	106.59	67.65	75.46	8.72	0.68
	No of Samples	5	5	5	5	5	5	5	5	5	5
	Ambient GW Quality	7.83	33.9	11.05	2.27	58.29	156.83	5	5.46	0.04	0.34
T35K	5 percentile	7.62	18.66	5.94	1.68	21.79	78.4	2.55	2.69	0.04	0.14
	95 percentile	8.39	35.76	14.79	2.97	73.26	161.24	5.75	6.94	0.18	2
	GW Quality Reserve	8.61	37.29	12.16	2.5	64.12	172.51	5.5	6	0.04	0.38
	No of Samples	4	4	4	4	4	4	4	4	4	4
	Ambient GW Quality	7.94	34.3	12.43	4.23	54.92	158.56	6.13	7.45	0.04	0.46
T35L	5 percentile	7.4	30.53	4.56	0.61	17.71	101.58	3.8	2	0.02	0.14
	95 percentile	8.25	40.03	23.19	10.25	88.99	181.97	8.91	22.32	1.33	1.71
	GW Quality Reserve	8.74	37.73	13.68	4.65	60.41	174.41	6.74	8.19	0.04	0.51
	No of Samples	3	3	3	3	3	3	3	3	3	3
	Ambient GW Quality	7.65	30.7	19.76	7.2	30	158.1	6.17	12.9	0.04	0.33
T35M	5 percentile	7.38	30.52	6.58	1.17	16.98	98.26	3.68	3.09	0.02	0.13
	95 percentile	8.2	37.18	23.4	10.43	74.86	158.93	9.07	22.88	1.4	0.56
	GW Quality Reserve	8.42	33.77	21.73	7.92	33	173.91	6.79	14.19	0.04	0.36

Quaternary		рН	EC	Ca	Mg	Na	Tal	CI	SO4	NO3	F
catchment			(mS/m)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
	No of Samples	2	2	2	2	2	2	2	2	2	
	Ambient GW Quality	7.99	2115	57.75	65.25	5942.85	2960.4	5127.8	3623.65	0.08	0.53
T36A	5 percentile	7.8	364.5	20.27	33.98	775.37	501.06	831.38	416.91	0.03	0.53
	95 percentile	8.18	3865.5	95.24	96.53	11110.34	5419.74	9424.22	6830.4	0.13	0.43
	GW Quality Reserve	8.79	2326.5	63.53	71.78	6537.14	3256.44	5640.58	3986.02	0.09	
	No of Samples	3	3	3	3	3	3	3	3	3	0.58
	Ambient GW Quality	8.01	170	16.1	30.5	201.2	227.8	354	60.6	0.08	0.42
T36B	5 percentile	7.8	49.58	14.48	12.14	53.15	67.51	92.73	17.58	0.03	
	95 percentile	8.18	3671	91.07	93.05	10536.17	5146.48	8946.84	6474.09	0.03	0.2
	GW Quality Reserve	8.81	187	17.71	33.55	221.32	250.58	389.4	66.66	0.13	0.62

A summary of the water quality class and parameters of concern per quaternary catchment is shown in Table 4. The parameter of concern is the parameter that was used to make a decision about the water quality class of the quaternary.

Table 9.3. Water quality class and parameters of concern

Quaternary catchment	Class	Parameters of concern
T31A	0	None
T31B	0	None
T31C	0	None
T31D	0	None
T31E	0	None
T31F	0	None
T31G	0	None
T31H	0	None
T31J	0	None
T32A	0	None
T32B	0	None
T32C	0	None
T32D	0	None
T32E	0	None
T32F	0	None
T32G	0	None
T32H	0	None
T33A	0	None
T33B	0	None
T33C	0	None
T33D	0	None
T33E	0	None
T33F	0	None
T33G	0	None
T33H	0	None
T33J	0	None
T33K	0	None
T34A	1	None
T34B	1	None
T34C	1	None
T34D	1	None
T34E	0	None
T34F	0	None
T34G	0	None
T34H	0	None
T34J	1	Electrical Conductivity, Chloride and Nitrate

Quaternary catchment	Class	Parameters of concern
T34K	1	Chloride
T35A	0	None
T35B	0	None
T35C	0	None
T35D	0	None
T35E	0	None
T35F	0	None
T35G	0	None
T35H	0	None
T35J	0	None
T35K	0	None
T35L	0	None
T35M	0	None
T36A	3	Electrical conductivity, Sodium, Chloride and Phosphate
T36B	2	Electrical conductivity, Sodium and Chloride

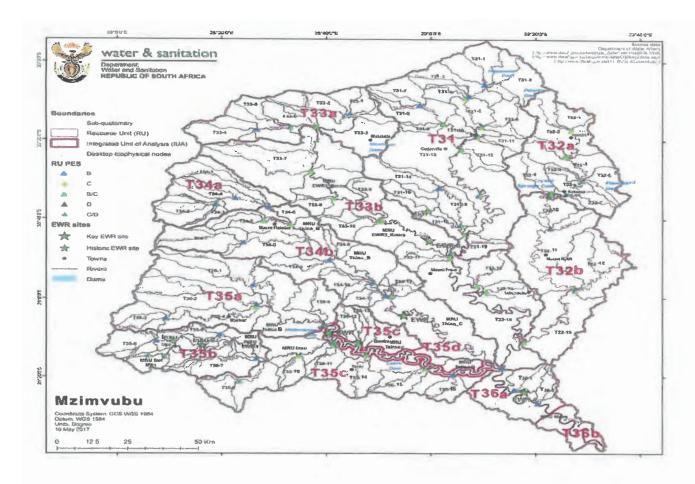


Figure 1: Locality map for the Mzimvubu, catchment.

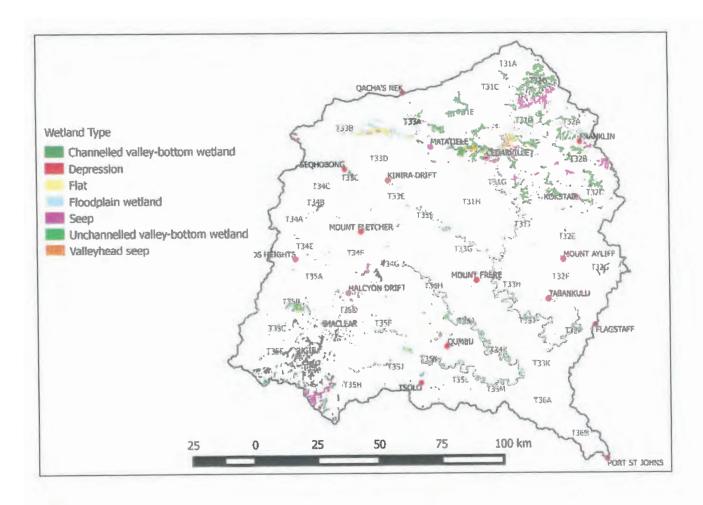


Figure 2 Study area: T3 primary catchment showing quaternary catchments and distribution of wetland types