GENERAL NOTICES • ALGEMENE KENNISGEWINGS

INDEPENDENT COMMUNICATIONS AUTHORITY OF SOUTH AFRICA NOTICE 683 OF 2018

PURSUANT TO SECTION 4 (1) OF THE ELECTRONIC COMMUNICATIONS ACT 2005, (ACT NO. 36 OF 2005)

HEREBY ISSUES A NOTICE REGARDING THE DRAFT IMT ROAD MAP FOR CONSULTATION.

- 1. The Independent Communications Authority of South Africa ("the Authority"), hereby publishes **the Draft International Mobile Telecommunications (IMT) Roadmap for consultation** in terms of section 2 and 4, read with sections 30, 31(4), and 33 of the Electronic Communications Act (Act No. 36 of 2005).
- 2. Interested persons are hereby invited to submit written representations, including an electronic version of the representation in Microsoft Word, of their views on the Draft IMT Roadmap by no later than 16h00 on Friday, 18 January 2019.
- 3. Persons making representations are further invited to indicate whether they are requesting an opportunity to make oral representations, which will not exceed one hour. The public hearings will be held from the 24 to 25 January 2019.
- 5. Written representations or enquiries may be directed to:

The Independent Communications Authority of South Africa (the Authority)

350 Witch-Hazel Avenue, Eco Point Office Park,

No. 42021 153

Eco Park, Centurion,

Gauteng.

Attention:

Mr Manyaapelo Richard Makgotlho

e-mail: rmakgotlho@icasa.org.za

6. All written representations submitted to the Authority pursuant to this notice shall be made available for inspection by interested persons from 15th of January 2018 at the ICASA Library or website and copies of such representations and documents will be obtainable on payment of a fee.

Where persons making representations require that their representation, or part thereof, be treated confidentially, then an applications in terms of section 4D of the ICASA Act, 2000 (Act No. 13 of 2000) must be lodged with the Authority. Such an application must be submitted simultaneously with the representation on the draft regulations and plan. Respondents are requested to separate any confidential material into a clearly marked confidential annexure. If, however, the request for confidentiality is refused, the person making the request will be allowed to withdraw the representation or document in question. The guidelines for confidentiality request are contained in Government Gazette Number 41839 (Notice 849 of 2018).

ADIA

RUBBEN MOHLALOGA CHAIRPERSON

GOVERNMENT GAZETTE, 9 NOVEMBER 2018

DRAFT IMT ROADMAP 2018

NOVEMBER 2018

No. 42021 155

Table of Contents

1	About	11
2	Executive Summary	12
2.1	Purpose of the IMT Roadmap	12
3	International Telecommunication Union (ITU) and IMT	17
3.1	What is IMT?	17
3.1.1	IMT 2000	17
3.1.2	IMT Advanced	18
3.1.3	IMT 2020 Background	19
3.2	Bands designated for IMT	25
3.3	Issues for WRC 19	27
4	SADC	32
5	South Africa	38
5.1	The Electronic Communications Act	38
5.1.1	Chapter 1: Introductory provisions	38
5.1.2	Chapter 2: Policy and regulations	38
5.1.3	Chapter 5: Radio frequency spectrum	39
5.2	The Frequency Migration Regulations and Plan 2018	39
5.2.1	Principles governing frequency migration	39
5.3	South Africa Connect	41
5.4	RECOMMENDATION ITU-R M.2083-0.	45
5.5	Global assignment objectives for IMT	46
5.6	IMT and Long Term Evolution (LTE)	47
5.7	LTE - paired and unpaired spectrum (FDD and TDD)	47
5.7.1	FDD and TDD trends	47
5.7.2	Flexible spectrum utilisation	48
5.7.3	High spectral efficiency for adaptive uplink /downlink configuration	48
5.7.4	Deployment issues	49
5.7.5	Interference suppression	50
5.8	Future system requirements for IMT / LTE & IMT2020 networks	50
6	Forecasts for South Africa	54

156	No. 42021	GOVERNMENT GAZETTE, 9 NOVEMBER 2018	
	6.1	Forecasts of overall IMT demand	54
	6.1.1	Forecast of overall M2M demand	
	6.2	IMT Demand for South Africa	
	0.2		
	7	IMT Roadmap	
	7.1	The IMT framework	65
	7.1.1	What is IMT?	65
	7.1.2	The rationale for alignment with IMT in South Africa	66
	7.1.3	IMT bands previously identified	67
	7.2	Guard bands	68
	7.3	1700-2290 MHz band	73
	7.3.1	ITU Position on 1700-2290 MHz	73
	7.3.2	SADC Position on 1700-2290 MHz	74
	7.3.3	Radio Frequency Migration Plan for 1700-2290 MHz	78
	7.3.4	Current usage of the 1700-2290 MHz band in South Africa	80
	7.3.5	Proposal for extension of IMT2100	80
	7.3.6	Conclusions	82
	7.4	IMT2020 Frequencies for Consideration	83
	7.4.1	1.427-1.518 GHz	83
	7.4.2	3.3 – 3.6 GHz	84
	7.4.3	24.25-27.5 GHz	85
	7.4.4	37-40.5 GHz	
	7.4.5	42.5-43.5 GHz	91
	7.4.6	45.5-47 GHz	91
	7.4.7	47.2-50.2 GHz	
	7.4.8	50.4-52.6 GHz	
	7.4.9	66-76 GHz	
	7.4.10	81-86 GHz	
	7.4.11	31.8-33.4 GHz	
	7.4.12	40.5-42.5 GHz	-
	7.4.13	47-47.2 GHz	
	7.5	IMT2020 Proposed actions for identified IMT Frequency bands	
	7.5.1	1.427-1.518 GHz	
	7.5.2	3.3 – 3.6 GHz	
			Page 5/183

7.5.3	24.25-27.5 GHz	105
7.5.4	31.8-33.4 GHz	105
7.5.5	37-40.5 GHz	
7.5.6	40.5-42.5 GHz	107
7.5.7	45.5-47 GHz	
7.5.8	47-47.2 GHz	
7.5.9	47.2-50.2 GHz	107
7.5.10	50.4-52.6 GHz	107
7.5.11	57.0 – 66 GHz	
7.5.12	66-76 GHz (E-Band)	108
7.5.13	81-86 GHz (E-Band)	108
8	IMT Roadmap: Time Frame	110
8.1	Time frame overview	110
8.2	Calendar of expected activities by year	110
8.3	Timelines IMT 2020 and beyond	112
8.3.1	Medium term	113
8.3.2	Long term	113
8.3.2 8.4	Long term Workplan, timeline, process and deliverables for the future development	
	5	nt of IMT114
8.4	Workplan, timeline, process and deliverables for the future development	nt of IMT114 117
8.4 9	Workplan, timeline, process and deliverables for the future development IMT Spectrum and Universal Service Obligations	nt of IMT114 117 117
8.4 9 9.1	Workplan, timeline, process and deliverables for the future development IMT Spectrum and Universal Service Obligations	nt of IMT114 117 117 117
8.4 9 9.1 9.2	Workplan, timeline, process and deliverables for the future development IMT Spectrum and Universal Service Obligations Objectives of SA Connect Broadband challenge in South Africa	nt of IMT114 117 117 117 119
 8.4 9 9.1 9.2 9.3 	Workplan, timeline, process and deliverables for the future development IMT Spectrum and Universal Service Obligations Objectives of SA Connect Broadband challenge in South Africa Considerations for assignment	nt of IMT114 117 117 117 119 119
 8.4 9 9.1 9.2 9.3 9.3.1 	Workplan, timeline, process and deliverables for the future development IMT Spectrum and Universal Service Obligations Objectives of SA Connect Broadband challenge in South Africa Considerations for assignment To link or not to link frequency bands	nt of IMT114 117 117 119 119 119 119
 8.4 9 9.1 9.2 9.3 9.3.1 9.3.2 	Workplan, timeline, process and deliverables for the future development IMT Spectrum and Universal Service Obligations Objectives of SA Connect Broadband challenge in South Africa Considerations for assignment To link or not to link frequency bands Individual Assignment or Wholesale	nt of IMT114 117 117 119 119 119 119 120
 8.4 9 9.1 9.2 9.3 9.3.1 9.3.2 9.4 	Workplan, timeline, process and deliverables for the future development IMT Spectrum and Universal Service Obligations Objectives of SA Connect Broadband challenge in South Africa Considerations for assignment To link or not to link frequency bands Individual Assignment or Wholesale Assignment: Obligations for Licensees	nt of IMT114 117 117 117 119 119 119 120 122
 8.4 9 9.1 9.2 9.3 9.3.1 9.3.2 9.4 10 	Workplan, timeline, process and deliverables for the future development IMT Spectrum and Universal Service Obligations Objectives of SA Connect Broadband challenge in South Africa Considerations for assignment To link or not to link frequency bands Individual Assignment or Wholesale Assignment: Obligations for Licensees Considerations Arising out of IMT Roadmap 2014 & 2018	nt of IMT114 117 117 117 119 119 119 120 122 122
 8.4 9 9.1 9.2 9.3 9.3.1 9.3.2 9.4 10 10.1 	Workplan, timeline, process and deliverables for the future development IMT Spectrum and Universal Service Obligations Objectives of SA Connect Broadband challenge in South Africa Considerations for assignment To link or not to link frequency bands Individual Assignment or Wholesale Assignment: Obligations for Licensees Considerations IMT Bands for implementation 2014 Roadmap Considerations IMT Roadmap frequency bands for IMT2020 Implement	nt of IMT114 117 117 117 119 119 119 120 122 122 122 124
 8.4 9 9.1 9.2 9.3 9.3.1 9.3.2 9.4 10 10.1 10.2 	 Workplan, timeline, process and deliverables for the future development IMT Spectrum and Universal Service Obligations Objectives of SA Connect Broadband challenge in South Africa Considerations for assignment To link or not to link frequency bands Individual Assignment or Wholesale Assignment: Obligations for Licensees Considerations IMT Bands for implementation 2014 & 2018 Considerations IMT Roadmap frequency bands for IMT2020 Implement 	nt of IMT114 117 117 117 119 119 119 120 122 122 122 124

158	No. 42021 GOVERNMENT GAZETTE, 9 NOVEMBER 2018	
	Appendiz	x D Additional information for 37-40.5 GHz138
	Appendix	x E Additional Information 40.5-42.5 GHz142
	Appendix	x F 66 to 76 GHz and 81 to 86 GHz Additional Information148
	Appendix	x G E-Band Channel Arrangements150
	Appendiz	x H: RECOMMENDATION ITU-R M.2083-0152
	11	Policy on Intellectual Property Right (IPR)iii
	12	1 Introduction9
	13	2 Observation of trends10
	13.1	2.1 User and application trends
	13.1.1	2.1.1 Supporting very low latency and high reliability human-centric communication
	13.1.2	2.1.2 Supporting very low latency and high reliability machine-centric communication
	13.1.3	2.1.3 Supporting high user density
	13.1.4	2.1.4 Maintaining high quality at high mobility10
	13.1.5	2.1.5 Enhanced multimedia services
	13.1.6	2.1.6 Internet of Things
	13.1.7	2.1.7 Convergence of applications11
	13.1.8	2.1.8 Ultra-accurate positioning applications
	13.2	2.2 Growth in IMT traffic
	13.3	2.3 Technology trends
	13.3.1	2.3.1 Technologies to enhance the radio interface
	13.3.2	2.3.2 Network technologies
	13.3.3	2.3.3 Technologies to enhance mobile broadband scenarios
	13.3.4	2.3.4 Technologies to enhance massive machine type communications
	13.3.5	2.3.5 Technologies to enhance ultra-reliable and low latency communications 14
	13.3.6	2.3.6 Technologies to improve network energy efficiency14
	13.3.7	2.3.7 Terminal technologies14
	13.3.8	2.3.8 Technologies to enhance privacy and security
	13.3.9	2.3.9 Technologies enabling higher data rates
	13.4	2.4 Studies on technical feasibility of IMT between 6 and 100 GHz15

No. 42021 159

13.5	2.5 Spectrum implications	.16
13.5.1	2.5.1 Spectrum harmonization	.16
13.5.2	2.5.2 Importance of contiguous and wider spectrum bandwidth	.16
14	3 Evolution of IMT	.18
14.1	3.1 How IMT has developed	.18
14.2	3.2 Role of IMT for 2020 and beyond	.18
15	4 Usage scenarios for IMT for 2020 and beyond	.20
16	5 Capabilities of IMT-2020	.22
17	6 Framework and objectives	
-		.28
17	6 Framework and objectives	.28 .28
17 17.1	6 Framework and objectives 6.1 Relationships	.28 .28 .28
17 17.1 17.1.1	6 Framework and objectives6.1 Relationships6.1.1 Relationship between existing IMT and IMT-2020	.28 .28 .28 .28
17 17.1 17.1.1 17.1.2	 6 Framework and objectives	.28 .28 .28 .28 .28
17 17.1 17.1.1 17.1.2 17.2	 6 Framework and objectives	.28 .28 .28 .28 .28 .28 .28

160	No.	42021

GOVERNMENT GAZETTE, 9 NOVEMBER 2018

Table of Figures

Figure 1: IMT Systems now and in the future (Source: ITU)	18
Figure 2: Process for developing an RFSAP	40
Figure 3: Potential unpaired LTE assignments in 3400-3600 MHz	49
Figure 4: Input parameter overview for IMT spectrum demand estimation	54
Figure 5: Mobile traffic forecasts toward 2020 by extrapolation (Source: ITU)	55
Figure 6: Current South Africa IMT assignments summarised in Table 9	57
Figure 7: M2M device connections by sector, worldwide, 2013–2024	59
Figure 8: South Africans favour tablets and smart phones	60
Figure 9: Tablet respondents by type of connectivity enabled on their device, by on MEA and by region	-
Figure 10: IMT spectrum overview within South Africa in 2025	68
Figure 11: Public safety spectrum allocation in US-700MHz band	71
Figure 12: Frequency arrangements in the 1710-2200 MHz band	73
Figure 13: Current assignments with 1700-2200 MHz	80
Figure 14: Proposal of Extension of paired IMT2100	81
Figure 15: IMT2100-extensions proposal	81
Figure 16: Population densities in South Africa	119

Table of Tables

Table 1: ITU definition of IMT bands	.25
Table 2: Table showing SADC Frequency Allocations for IMT Bands	.37
Table 3: National Broadband Policy Targets	.42
Table 4: Policy decisions from the broadband policy	.44
Table 5: Radio parameters for RATG 1 (pre-IMT2000, IMT2000):	.56
Table 6: Radio parameters for RATG 2 (IMT advanced)	.56
Table 7: Spectral efficiency parameters for RATG1 and RATG 2 (IMT advanced)	.56
Table 8: Total spectrum requirements for both RATG 1 (pre-IMT2000, IMT2000) and RATG 2 (IMT advanced) in the year 2020	.57
Table 9: South Africa IMT spectrum assignments	.58
Table 10: Telecoms KPIs, South Africa, 2009-3Q 2013	.62
Table 11: IMT roadmap: (summary)	.67
Table 12: ITU-R M2110: CDMA separation distances (BS-BS case) in 450-470MHz	.70
Table 13: Results of study of interference of broadcasting systems with CDMA 450	.70
Table 14: Frequency arrangements in the band 1710-2200 MHz	.73
Table 15: SADC Frequency Allocation Plan 1700-2290 MHz	.76
Table 16: SA Frequency Migration Plan 2015-2285 MHz	.78
Table 17: CRASA channelling plan for 2025-2290 MHz	.79
Table 18: SA Connect Targets1	117

GOVERNMENT GAZETTE, 9 NOVEMBER 2018

1 About

This document aims to share the findings of the Independent Communications Authority of South Africa (hereafter referred to as "The Authority") with regards to the roadmap for radio frequency spectrum for International Mobile Telecommunications (IMT).

IMT is as named in ITU-R Resolution 56-1. IMT is the root name and encompasses IMT 2000 (including enhancement) and IMT Advanced (including enhancement).

This document builds on the "draft Frequency Migration Plan" published in Gazette 41854 on August 24th, 2018 .The roadmap hereby published by the Authority identifies the bands for IMT deployment and also identifies the migration of a number of current licensees out of (or within) bands identified for IMT services. For bands where costs and benefits of the migration were not straightforward, the Authority conducted feasibility studies to determine the appropriateness of migration, details of which can be found in the appendix to this document.

The Authority's primary objectives are to ensure spectrum efficiency, universal availability of broadband services as well as a vibrant and competitive telecommunications industry and promote investments.

Subsequently we now need to define a new vision for South Africa that is in line with the international and ITU trends. It is worthwhile to look at RECOMMENDATION ITU-R M.2083-0. This document describe the IMT Vision – Framework and overall objectives of the future development of IMT for 2020 and beyond

This Recommendation defines the framework and overall objectives of the future development of International Mobile Telecommunications (IMT) for 2020 and beyond in light of the roles that IMT could play to better serve the needs of the networked society, for both developed and developing countries, in the future. In this Recommendation, the framework of the future development of IMT for 2020 and beyond, including a broad variety of capabilities associated with envisaged usage scenarios is described in detail. Furthermore, this Recommendation addresses the objectives of the future development of IMT for 2020 and beyond, which includes further enhancement of existing IMT and the development of IMT-2020. It should be noted that this Recommendation is defined considering the development of IMT to date based on Recommendation ITU-R M.1645.

No. 42021 163

2 **Executive Summary**

2.1 Purpose of the IMT Roadmap

The growing demand for mobile broadband in South Africa indicates a need for more mobile broadband bandwidth capacity in general. At the same time, many rural areas do not have access to mobile bandwidth indicating a need for a universal mobile broadband coverage, a need best served by deploying lower frequencies that propagate further.

The International Telecommunication Union (ITU) has identified frequency bands that could be used for International Mobile Telecommunications (IMT), which is mainly intended for mobile broadband. The Radio Frequency Migration Plan 2013 further identified which of these IMT bands (between 450 and 3600 MHz) could be so deployed in South Africa based on the National Radio Frequency Plan (NRFP) 2013 for South Africa. The eventual assignment to IMT is made through a Radio Frequency Spectrum Assignment Plan (RFSAP).The following IMT Radio Frequency Spectrum Assignment Plans (Final) were published:

- Government Gazette No 38640 Notice 270 of 2015 450 to 470 MHz (Final)
- Government Gazette No 38640 Notice 271 of 2015 703 to 733 MHz and 758 to 788 MHz (Final)
- Government Gazette No 38640 Notice 272 of 2015 733 to 758 MHz (Final)
- Government Gazette No 38640 Notice 273 of 2015 791 to 821 MHz and 732 to 762 MHz (Final)
- Government Gazette No 38640 Notice 275 of 2015 880 to 915 MHz and 925 to 960 MHz (Final)
- Government Gazette No 38640 Notice 276 of 2015 2300 to 2400 MHz (Final)
- Government Gazette No 38640 Notice 277 of 2015 2500 to 2570 MHz and 2620 to 2690 MHz (Final)
- Government Gazette No 38640 Notice 278 of 2015 3400 to 3600 MHz (Final)

The Radio Frequency Migration Plan 2013 has since been replaced by the draft Frequency Migration Plan 2018 and the National Radio Frequency Plan (NRFP) 2013 has been replace by National Radio Frequency Plan (NRFP) 2018. A key driver for the deployment of IMT bands is the need to ensure that mobile broadband plays its role in meeting the objectives of 'broadband for all' which is encapsulated in the targets of SA Connect published in 2013. A key part of this policy/ document concerns the deployment of the 700 MHz and 800 MHz digital dividend bands that is still being occupied by analogue and digital terrestrial television (DTT). ICASA has taken all steps in their jurisdiction by publishing the Final Radio Frequency Spectrum Assignment Plans to implement IMT in Digital Dividend I and II.

"The efficient assignment and subsequent use of high demand spectrum to meet this demand is vital and the cost of making this spectrum available is vital and the cost of not doing so is high."

The Department of Communications have appointed a team to prioritise DTT implementation in order to release the 700 and 800 MHz spectrum for IMT.

Although IMT essentially means all mobile telecommunications, there is currently a strong focus on Long Term Evolution (LTE) and this is reflected in the document. Where it is necessary to give emphasis to IMT for LTE, the document refers to *broadband* IMT.

For an increasing number of South African consumers and businesses, mobile connectivity is now an everyday necessity. Our desire to get online wherever we are – and at ever-faster speeds – has helped fuel an explosion in mobile data.

IMT2020 is the next generation of mobile technologies and is being designed to provide greater capacity for wireless networks, offer greater reliability, and deliver extremely fast data speeds, enabling innovative new services across different industry sectors.

The first wave of commercial products is expected to be available in 2020. However, initial pre-commercial deployments are already expected to start from 2018.

Mobile operators have expressed their concerns regarding the availability of IMT2020 spectrum for testing and implementation in South Africa.

It is worthwhile to look at RECOMMENDATION ITU-R M.2083-0. This document describe the IMT Vision – Framework and overall objectives of the future development of IMT for 2020 and beyond. South Africa need to look in detail into this recommendation of which a copy is included in Appendix H to this document.

RESOLUSION 238 (WRC-15)

The following bands, which are already allocated to mobile, will be studied with a view to an IMT-2020 identification: •

- 24.25 27.5 GHz •
- 37 40.5 GHz •
- 42.5 43.5 GHz •
- 45.5 47 GHz •
- 47.2 50.2 GHz •
- 50.4 52.6 GHz •
- 66 76 GHz •
- 81 86 GHz

The following bands will also be studied, although they do not currently have global mobile allocations: •

No. 42021 165

- 31.8 33.4 GHz •
- 40.5 42.5 GHz •
- 47 47.2 GHz

What services and applications will IMT2020 support?

IMT2020 technologies are under development, and are likely to include both an evolution of existing and new radio technologies. Potential IMT2020 services and applications can be grouped into three different classes:

• Enhanced Mobile Broadband. Together with an evolution of the services already provided by 4G, 5G is expected to provide faster and more reliable mobile broadband, offering a richer experience to consumers;

 Massive Machine Type Communications. The Internet-of-Things (IoT) – where gadgets and devices wirelessly connect to the internet and each other – is happening on existing networks. Its technology is being used in everything from smart homes to wearables.
 IMT2020 should help the evolution of IoT services and applications and improve interaction between different platforms. Possible future applications could include realtime health monitoring of patients; optimisation of street lighting to suit the weather or traffic; environmental monitoring and smart agriculture. Data security and privacy issues will need to be considered given huge amounts of data could be transferred over a public network; and

• Ultra-Reliable and Low Latency Communications. IMT2020 networks are being designed to be more reliable and have very low latencies (network delays). This could make them suitable for applications such as connected and driverless cars (cars would use the technology to communicate with each other, other road users and even the road infrastructure), and smart manufacturing (potentially connecting all the various machines involved in the different phases of a production chain). These different services have different requirements in terms of speed, coverage and reliability, which will demand different network solutions (the evolution of existing network and potentially new networks) and different deployment models (including many small cells), an appropriate network infrastructure (which will include both fibre and wireless connectivity to the core network) and access to different spectrum bands.

The conditions for the use of the bands for IMT will be specified in the appropriate Radio Frequency Spectrum Assignment Plans (RFSAPs).

The assignment of IMT frequencies will generally be made through an Invitation to Apply (ITA) in line with Regulation 7 of the Radio Frequency Spectrum Regulations 2011. This process will detail the actual mechanism of assignment (including market-based mechanisms, etc.).

Overview

This IMT Roadmap summarises the ITU perspective on IMT, the Southern African Development Community (SADC) perspective on IMT, the SA Connect targets and the related issue of Universal Service (US) and obligations.

As mentioned before the following IMT Radio Frequency Spectrum Assignment Plans (Final) were published:

- Government Gazette No 38640 Notice 270 of 2015 450 to 470 MHz (Final)
- Government Gazette No 38640 Notice 271 of 2015 703 to 733 MHz and 758 to 788 MHz (Final)
- Government Gazette No 38640 Notice 272 of 2015 733 to 758 MHz (Final)
- Government Gazette No 38640 Notice 273 of 2015 791 to 821 MHz and 732 to 762 MHz (Final)
- Government Gazette No 38640 Notice 275 of 2015 880 to 915 MHz and 925 to 960 MHz (Final)
- Government Gazette No 38640 Notice 276 of 2015 2300 to 2400 MHz (Final)
- Government Gazette No 38640 Notice 277 of 2015 2500 to 2570 MHz and 2620 to 2690 MHz (Final)
- Government Gazette No 38640 Notice 278 of 2015 3400 to 3600 MHz (Final)

The IMT 850 band is still under discussion in South Africa. On 01 September 2017, in Government Gazette 41082 (Notice 684 of 2017) published the Second draft Radio Frequency Spectrum Assignment Plan for the frequency band 825 to 830 MHz and 870 to 875 MHz for public consultation. The public hearings were held from 06 to 07 September 2018 at the Authority's head office in Block C Auditorium, Pinmil Farm, Sandton.

The IMT Roadmap also gives indicative timelines for the deployment of IMT spectrum to support the targets set by the South Africa Connect (SA Connect) broadband initiative for 2016 and 2020 in terms of ensuring widespread area coverage and adequate bandwidth capacity. It is anticipated that additional spectrum for IMT can be assigned in the short term, however this does not obviate the need for using existing spectrum more efficiently and for operators to 'densify' their networks. The requirement for IMT2020 spectrum places an additional demand for spectrum and therefore additional IMT Spectrum need to be identified. Such spectrum will have to be investigated with a feasibility study to determine the impact of refarming, cost of migration, equipment lifetime and the national need for such frequency spectrum.

Furthermore, the IMT roadmap lists options and recommendations for the deployment of bands designated for IMT usage, potential migration scenarios and timelines, as well as assignments with minimum requirements for coverage and capacity obligations for existing and new bands.

Previously a total bandwidth of 460 MHz was used for IMT in South Africa, mostly for Universal Mobile Telecommunications System (UMTS) and Global System for Mobile Communications (GSM), with LTE deployment. This IMT Roadmap 2014 envisages that an additional 2×133 MHz paired spectrum and 290 MHz unpaired spectrum will be made

No. 42021 167

available over a given schedule. The most important additional key IMT bands for both coverage (especially rural coverage) and capacity are the IMT700 and IMT800 bands. Unfortunately the IMT700 and IMT800 are still not available for use in South Africa.

3 International Telecommunication Union (ITU) and IMT

3.1 What is IMT?¹

According to the ITU, International Mobile Telecommunications (IMT) systems are mobile systems that provide access to a wide range of telecommunication services including advanced mobile services, supported by mobile and fixed networks, which are increasingly packet-based. Key features of IMT include:

- a high degree of commonality of functionality worldwide while retaining the flexibility to support a wide range of services and applications in a cost efficient manner;
- compatibility of services within IMT and with fixed networks;
- capability of interworking with other radio access systems;
- high-quality mobile services;
- user equipment suitable for worldwide use;
- user-friendly applications, services and equipment;
- worldwide roaming capability; and
- enhanced peak data rates to support advanced services and applications.

Over the past 25 years, the ITU has developed the IMT system framework of standards for mobile telephony and continues to lead international efforts involving governments and industry players to produce the next generation of standards for global mobile communications.

The term 'IMT' should be the root name that encompasses both IMT-2000 and IMT-Advanced collectively.

3.1.1 IMT 2000

IMT-2000 (International Mobile Telecommunications 2000) is a term coined by the global cellular community to produce a globally-co-ordinated definition of 3G mobile technologies. IMT-2000 networks have been widely deployed since 2000.

According to the ITU, IMT-2000 systems are third generation (3G) mobile systems, which provide access to a wide range of telecommunications services, supported by the fixed telecommunication networks (e.g. PSTN/ISDN/Internet Protocol (IP)), as well as to other services which are specific to mobile users.

The specifications for the initial releases of IMT-2000 are defined in Recommendation ITU R M.1457. The term 'IMT-2000' should also encompass its enhancements and future developments.

¹ from Recommendation ITU-R M.1645

3.1.2 IMT Advanced

The term 'IMT-Advanced' refers to systems, system components and related aspects that include new radio interfaces supporting new capabilities of systems beyond IMT-2000.

ITU has now specified standards for IMT-Advanced. IMT-Advanced provides nextgeneration global wireless broadband communications using a wide range of packetbased telecommunication services supported by mobile and fixed networks.

It is anticipated that IMT-Advanced will use radio-frequency spectrum much more efficiently making higher data transfers possible on less bandwidth in order to enable mobile networks to face the dramatic increase in data traffic that is expected in the coming years.

IMT-Advanced systems support low to high mobility applications and a wide range of data rates in accordance with user and service demands in multiple-user environments. IMT-Advanced also has capabilities for high quality multimedia applications within a wide range of services and platforms, providing a significant improvement in performance and quality of service.

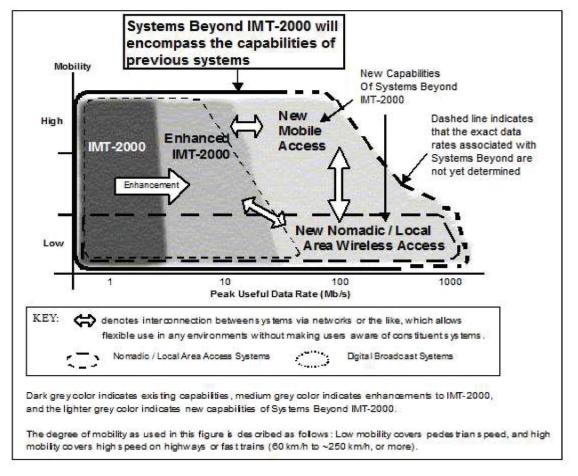


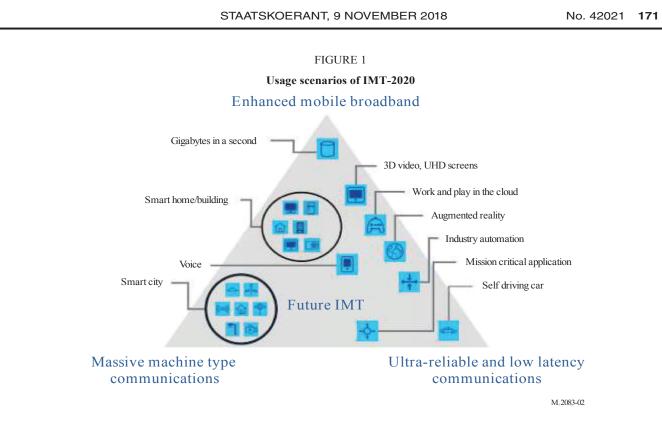
Figure 1: IMT Systems now and in the future (Source: ITU)

3.1.3 IMT 2020 Background

3.1.3.1 IMT evolution

International Mobile Telecommunications-2000 (IMT-2000) systems provided access to a wide range of telecommunication services, supported by the fixed telecommunication networks (e.g. PSTN/ISDN/IP), and to other services which are specific to mobile users.

Resolution ITU-R 56-2 clarifies the relationship between the terms "IMT-2000" and "IMT-Advanced" and assigns a name to those systems, system components, and related aspects that include new radio interface(s) that support the new capabilities "IMT for 2020 and beyond": IMT-2020. Resolution ITU-R 56 resolves that the term IMT-2000 encompasses also its enhancements and future developments and the term "IMT-Advanced" encompasses its enhancements and future developments. The term "IMT" is the root name that encompasses IMT-2000, IMT-Advanced, and IMT-2020 collectively.


To meet the ever increasing demand for wireless communication (e.g. increased no. of users, higher data rates, video or gaming services which require increased quality of service, etc.), IMT has been, and continues to be, enhanced.

3.1.3.2 Consumer demands

Consumer demands will shape the future development of IMT. In the future, it is foreseen that new demands, such as more traffic volume, many more devices with diverse service requirements, better quality of user experience (QoE) and better affordability by further reducing costs, etc., will require an increasing number of innovative solutions. In addition, technological advancement and the corresponding user needs will promote innovation and accelerate the delivery of advanced communication applications to consumers. Recommendation ITU-R M.2083 "IMT Vision – Framework and overall objectives of the future development of IMT for 2020 and beyond" describes these potential user and application trends, growth in traffic, technological trends and spectrum implications. Also Reports ITU-R M.2370 "IMT Traffic estimates for the years 2020 to 2030" and ITU-R M.2376 "Technical feasibility of IMT in bands above 6 GHz" detail these expected trends and phenomena for IMT-2020.

IMT-2020 systems will encompass a large number of different features. Depending on the circumstances and the different needs in different countries, future IMT systems should be designed in a modular manner so that not all features have to be implemented in all networks.

In order to fulfil these varied demands, IMT-2020 is envisaged to expand and support diverse usage scenarios and applications that will continue beyond the current IMT. Furthermore, a broad variety of capabilities would be tightly coupled with these intended different usage scenarios and applications for IMT-2020. Figure 1 illustrates some examples of envisioned usage scenarios for IMT-2020 identified in Recommendation ITU-R M.2083.

3.1.3.3 Capabilities of IMT-2020

IMT-2020 systems are mobile systems that include the new capabilities of IMT that go beyond those of IMT-Advanced. IMT-2020 systems support low to high mobility applications and a wide range of data rates in accordance with user and service demands in multiple user environments. IMT-2020 also has capabilities for high quality multimedia applications within a wide range of services and platforms, providing a significant improvement in performance and quality of service.

A broad variety of capabilities, tightly coupled with intended usage scenarios and applications for IMT-2020 is envisioned. Different usage scenarios along with the current and future trends will result in a great diversity/variety of requirements. The key design principles are flexibility and diversity to serve many different use cases and scenarios, for which the capabilities of IMT-2020, described in the following paragraphs, will have different relevance and applicability. In addition, the constraints on network energy consumption and the spectrum resource will need to be considered.

As indicated in Recommendation ITU-R M.2083, the following eight parameters are considered to be key capabilities of IMT-2020:

Peak data rate

Maximum achievable data rate under ideal conditions per user/device (in Gbit/s).

User experienced data rate

Achievable data rate that is available ubiquitously² across the coverage area to a mobile user/device (in Mbit/s or Gbit/s).

Latency

The contribution by the radio network to the time from when the source sends a packet to when the destination receives it (in ms).

Mobility

Maximum speed at which a defined QoS and seamless transfer between radio nodes which may belong to different layers and/or radio access technologies (multi-layer/-RAT) can be achieved (in km/h).

Connection density

Total number of connected and/or accessible devices per unit area (per km²).

Energy efficiency

Energy efficiency has two aspects:

- on the network side, energy efficiency refers to the quantity of information bits transmitted to/ received from users, per unit of energy consumption of the radio access network (RAN) (in bit/Joule);
- on the device side, energy efficiency refers to quantity of information bits per unit of energy consumption of the communication module (in bit/Joule).

Spectrum efficiency

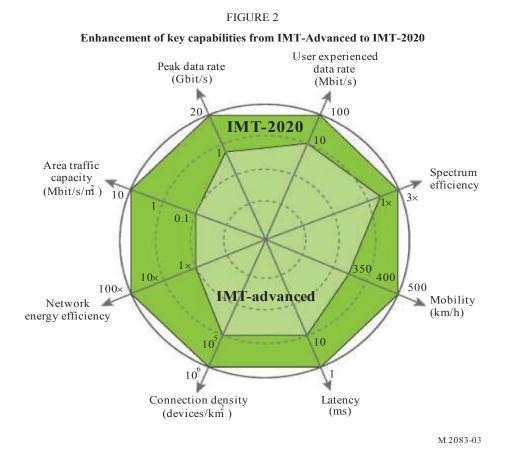
Average data throughput per unit of spectrum resource and per cell³ (bit/s/Hz).

Area traffic capacity

Total traffic throughput served per geographic area (in Mbit/s/m²).

IMT-2020 is expected to provide a user experience matching, as far as possible, fixed networks. The enhancement will be realized by increased peak and user experienced data rate, enhanced spectrum efficiency, reduced latency and enhanced mobility support.

In addition to the conventional human-to-human or human-to-machine communication, IMT-2020 will realize the Internet of Things by connecting a vast range of smart appliances, machines and other objects without human intervention.


² The term "ubiquitous" is related to the considered target coverage area and is not intended to relate to an entire region or country.

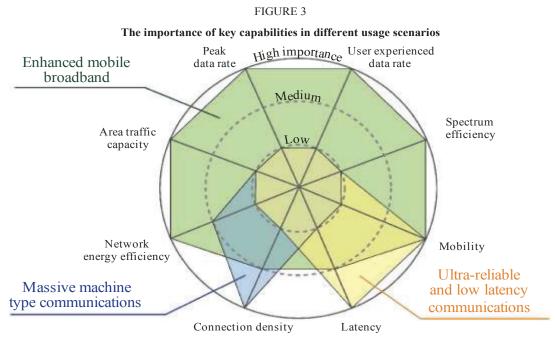
³ The radio coverage area over which a mobile terminal can maintain a connection with one or more units of radio equipment located within that area. For an individual base station, this is the radio coverage area of the base station or of a subsystem (e.g. sector antenna).

No. 42021 173

IMT-2020 should be able to provide these capabilities without undue burden on energy consumption, network equipment cost and deployment cost to make future IMT sustainable and affordable.

The key capabilities of IMT-2020 are shown in Fig. 2 (from Recommendation ITU-R M.2083), compared with those of IMT-Advanced.

The values in the Figure above are targets for research and investigation for IMT-2020 and may be further developed in other ITU-R Recommendations, and may be revised in the light of future studies.


As anticipated above, whilst all key capabilities may to some extent be important for most use cases, the relevance of certain key capabilities may be significantly different, depending on the use cases/scenario. The importance of each key capability for the usage scenarios *enhanced Mobile Broadband*, *ultra-reliable and low latency communication* and *massive machine-type communication* is illustrated in Fig. 3. This is done using an indicative scaling in three steps as "high", "medium" and "low".

In the enhanced Mobile Broadband scenario, user experienced data rate, area traffic capacity, peak data rate, mobility, energy efficiency and spectrum efficiency all have high importance, but mobility and the user experienced data rate would not have equal importance simultaneously in all use cases. For example, in hotspots, a higher user

experienced data rate, but a lower mobility, would be required than in wide area coverage case.

In some ultra-reliable and low latency communications scenarios, low latency is of highest importance, e.g. in order to enable the safety critical applications. Examples include traffic safety, traffic efficiency, smart grid, e-health, wireless industry automation, augmented reality, remote tactile control and tele-protection. Such capability would be required in some high mobility cases as well, e.g., in transportation safety, while, e.g. high data rates could be less important.

In the massive machine type communication scenario, high connection density is needed to support tremendous number of devices in the network that e.g. may transmit only occasionally, at low bit rate and with zero/very low mobility. A low cost device with long operational lifetime is vital for this usage scenario.

M.2083-04

Other capabilities may be also required for IMT-2020, which would make future IMT more flexible, reliable, and secure when providing diverse services in the intended usage scenarios:

Spectrum and bandwidth flexibility

Spectrum and bandwidth flexibility refers to the flexibility of the system design to handle different scenarios, and in particular to the capability to operate at different frequency ranges, including higher frequencies and wider channel bandwidths than today.

Reliability

Reliability relates to the capability to provide a given service with a very high level of availability.

Resilience

Resilience is the ability of the network to continue operating correctly during and after a natural or man-made disturbance, such as the loss of mains power.

Security and privacy

Security and privacy refers to several areas such as encryption and integrity protection of user data and signalling, as well as end user privacy preventing unauthorized user tracking, and protection of network against hacking, fraud, denial of service, man in the middle attacks, etc.

Operational lifetime

Operational life time refers to operation time per stored energy capacity. This is particularly important for machine-type devices requiring a very long battery life (e.g. more than 10 years) whose regular maintenance is difficult due to physical or economic reasons.

These capabilities enable IMT-2020 to address evolving user needs. The capabilities of IMT-2020 systems are being continuously enhanced in line with user trends and technology developments.

3.1.3.4 Relationship between existing IMT and IMT-2020

As indicated in Section 3 above, in order to support emerging new scenarios and applications for 2020 and beyond, it is foreseen that development of IMT-2020 will be required to offer enhanced capabilities. The minimum technical requirements (and corresponding evaluation criteria) to be defined by ITU-R based on these capabilities for IMT-2020 could potentially be met by adding enhancements to existing IMT, incorporating new technology components and functionalities, and/or the development of new radio interface technologies.

Furthermore, IMT-2020 will interwork with and complement existing IMT and its enhancements.

3.1.3.5 Framework of IMT-2020

The framework and objectives including overall timeframes for the future development of IMT for 2020 and beyond are described in some detail in Recommendation ITU-R M.2083.

3.2 Bands designated for IMT

IMT systems support low to high mobility applications and a wide range of data rates in accordance with user and service demands in multiple user environments. IMT also has capabilities for high quality multimedia applications within a wide range of services and platforms, providing a significant improvement in performance and quality of service.

The features of IMT enable it to address evolving user needs as the capabilities of IMT systems are being continuously enhanced in line with user trends and technology developments. IMT will operate in the worldwide bands identified in the ITU Radio Regulations (RR).

The table below describes the ITU definition of IMT bands which were mostly addressed by the publication of the Final Radio Frequency Spectrum Assignment Plans.

Band (MHz)	Frequency band	BW ^{Note1}	RR FN	Channel Plan	WRC Resolution/s
450	450-470 MHz	<20 MHz	5.286AA	(Note 2)	224 (Rev. WRC-12)
700	694-790 MHz	<96 MHz	5.312A	(Note 3)	232 (WRC-12) and 224 (WRC-12)
800	791-821 MHz // 832- 862 MHz	2×30 MHz	5.317A	M.1036 (A3) (Note 3)	224 (Rev. WRC-12) and 749 (Rev. WRC-12)
850	824-849 MHz // 869-894 MHz	<2×8 MHz (Note 4)	5.317A	M.1036 (A1)	224 (Rev. WRC-12) and 749 (Rev. WRC-12)
900	880-915 MHz // 925-960 MHz	2×35 MHz	5.317A	M.1036 (A2)	224 (Rev. WRC-12) and 749 (Rev. WRC-12)
1800	1710-1785 MHz // 1805-1880 MHz	2×75 MHz	5.384A	M.1036 (B2)	223 (Rev. WRC-12)
2100	1920-1980 MHz // 2110-2170 MHz	2×60 MHz	5.388	M.1036 (B1)	212 (Rev. WRC-07) and 223 (Rev. WRC-12)
2100 (TDD)	1900-1920 MHz, 2010-2025 MHz	35 MHz (Note 5)	5.388	M.1036 (B1)	212 (Rev. WRC-07) and 223 (Rev. WRC-12)
2300	2300-2400 MHz	100 MHz	5.384A	M.1036 (E1)	223 (Rev. WRC-12) (Note 6)
2600	2500-2690 MHz	2×70 MHz 50 MHz	5.384A	M.1036 (C1)	223 (Rev. WRC-12) (Note 7)
3500	3400-3600 MHz	2×80 MHz (Note 8)	5.430A	M.1036 (F2)	NA

Table 1: ITU definition of IMT bands

Table 1 lists all possible IMT frequency bands identified by the ITU, relevant ITU Radio Regulation footnote as well as the applicable ITU-R channel plan. The notes are taken from the (South African) National Radio Frequency Plan 2013 (NRFP-13).

Note 1: This column indicates the amount of IMT assignable spectrum; guard bands, centre gaps, etc. are therefore excluded.

Note 2: Use of this band will be subject to a feasibility study. Issues to be addressed will include the existing usage, the various channel plan options described in ITU-R M.1036 (section 1) for the band 450-470 MHz, the availability of spectrum in this band, as well as the availability of IMT equipment.

Note 3: The World Radiocommunication Conference 2007 (WRC-07) allocated the band 790-862 MHz to all mobile (except aeronautical mobile services) on a primary basis in many countries in ITU Region 1 and designated it for IMT (see 5.316A, 5.316B and 5.317A). WRC-12 resolved to allocate the frequency band 694-790 MHz in ITU Region 1 to the mobile, except aeronautical mobile, service on a co-primary basis with other services to which this band is allocated on a primary basis and to identify it for IMT and ensure that the allocation is effective immediately after WRC-15 (see 5.312A and ITU Resolution 232 (WRC-12)). WRC-15 will specify the technical and regulatory conditions applicable to the mobile service after taking into account ITU-R studies.

Replanning of the broadcasting spectrum to accommodate digital television within the band 470-694 MHz is underway. The band 694-862 MHz will be subject to the outcome of WRC-15 and used exclusively for IMT (mobile services), and planning for this use of the band will be concurrent to the planning of the migration of the broadcasting services. It is intended that the process for the assignment of the band 694-862 MHz for mobile services will take place prior to the end of the dual illumination period. Migration of the broadcasting services from this band will be addressed in accordance with the Terrestrial Broadcast Frequency Plan 2013 (TBFP-13).

Suitable channel plans for the 700 MHz frequency band for IMT systems are being developed by ITU-R WP 5D. The amount of assignable spectrum in this band will depend on the outcome of this exercise. It is important to note that the 700 MHz channel plan adopted in the APT Region (A5) overlaps the 800 MHz channel plan adopted in Europe and Africa (A3).

Note 4(i): Whereas the Southern African Development Community (SADC), including South Africa, adopted the 2×30 MHz channel plan in the 800 MHz band (A3), this plan is under review considering the adoption at WRC-12 of the 700 MHz band for IMT (see also Note 3 above).

Note 4(ii): Although the international 850 MHz band (also known as CDMA-2000 or GSM850 band plan) has 2×25 MHz total bandwidth, the limited assignable spectrum in South Africa is a result of this band overlapping the GSM 900 MHz band and more importantly due to the use of analogue broadcasting in the UHF band. In South Africa, the use of the 800 MHz band will take precedence over the use of the 850 MHz band; no new assignments will therefore be made according to the 850 MHz channel plan.

Note 5: Although the band 1885-1900 MHz is also designated for IMT, the band 1880-1900 MHz is used extensively for Digital Enhanced Telecommunications (DECT) cordless telephone systems. Sharing between IMT and DECT cordless telephones is problematic.

The band 1900-1920 MHz could be used for IMT in future; it is currently used for Fixed Wireless Access (FWA) systems.

Note 6: In South Africa, the 2.3 GHz band is allocated to mobile service on a primary basis and is identified for IMT. This band is part of the 2.4 GHz band (2300-2500 MHz) used for FWA systems.

Note 7: The 2.6 GHz band (2500-2690 MHz) is available for IMT in accordance with ITU-R Recommendation M.1036 (C1). This channel plan allows for 2×70 MHz (paired) and 50 MHz (unpaired) spectrum.

Note 8: The 3.5 GHz band is currently used for FWA systems in South Africa, in particular WiMAX. The channel configuration is based on 2×100 MHz plan with no guard bands or centre gap (Tx-Rx = 100 MHz). When using this band for IMT systems, a new channelling plan is required. ITU-R Recommendation M.1036 (section 6) recommends two options namely: F1 (unpaired, 3400-3600 MHz); and F2 (3410-3490 MHz paired with 3510-3590 MHz). Considering that the current SA plan using Tx-Rx of 100 MHz, option F2 is recommended for SA. Refarming of current licensees may be required to align with this option.

The following IMT bands were assigned by the publications of the Final Radio Frequency Spectrum Assignment Plans.

- IMT 450
- IMT 700
- IMT 800
- IMT 900
- IMT 2300
- IMT 2600
- IMT 3500

The IMT 850 band's is still under discussion and the 2nd Draft Radio Frequency Spectrum Assignment Plan was published

The decision on IMT 1800 and IMT 2100 bands has been delayed until a decision and guidance has been given by the ITU.

3.3 Issues for WRC 19

ITU Study Group 5D have been working on the following frequency band for IMT use and implementation.

The following bands, which are already allocated to mobile, will be studied with a view to an IMT-2020 identification: •

- 24.25 27.5 GHz •
- 37 40.5 GHz •

No. 42021 179

- 42.5 43.5 GHz •
- 45.5 47 GHz •
- 47.2 50.2 GHz •
- 50.4 52.6 GHz •
- 66 76 GHz •
- 81 86 GHz

The following bands will also be studied, although they do not currently have global mobile allocations: •

- 31.8 33.4 GHz •
- 40.5 42.5 GHz •
- 47 47.2 GHz

The above frequency studies are extracted from the ITU resolution below:

RESOLUTION 238 (WRC-15)

Studies on frequency-related matters for International Mobile Telecommunications identification including possible additional allocations to the mobile services on a primary basis in portion(s) of the frequency range between 24.25 and 86 GHz for the future development of International Mobile Telecommunications for 2020 and beyond

The World Radiocommunication Conference (Geneva, 2015), considering

a) that International Mobile Telecommunications (IMT) is intended to provide telecommunication services on a worldwide scale, regardless of location and type of network or terminal;

b) that IMT systems have contributed to global economic and social development;

c) that IMT systems are now being evolved to provide diverse usage scenarios and applications such as enhanced mobile broadband, massive machine-type communications and ultra-reliable and low-latency communications;

d) that ultra-low latency and very high bit rate applications of IMT will require larger contiguous blocks of spectrum than those available in frequency bands that are currently identified for use by administrations wishing to implement IMT;

e) that it may be suitable to examine higher frequency bands for these larger blocks of spectrum;

f) that there is a need to continually take advantage of technological developments in order to increase the efficient use of spectrum and facilitate spectrum access;

g) that the properties of higher frequency bands, such as shorter wavelength, would better enable the use of advanced antenna systems including MIMO and beam-forming techniques in supporting enhanced broadband;

h) that ITU-T has initiated the study of network standardization for IMT for 2020 and beyond;

i) that adequate and timely availability of spectrum and supporting regulatory provisions is essential to realize the objectives in Recommendation ITU-R M.2083;

j) that harmonized worldwide bands and harmonized frequency arrangements for IMT are highly desirable in order to achieve global roaming and the benefits of economies of scale;

k) that identification of frequency bands allocated to mobile service for IMT may change the sharing situation regarding applications of services to which the frequency band is already allocated, and may require additional regulatory actions;

I) the need to protect existing services and to allow for their continued development when considering frequency bands for possible additional allocations to any service, noting

a) that Resolution ITU-R 65 addresses the principles for the process of development of IMT for 2020 and beyond, and that Question ITU-R 77-7/5 considers the needs of developing countries in the development and implementation of IMT;

b) that Question ITU-R 229/5 seeks to address the further development of IMT;

c) that IMT encompasses both IMT-2000, IMT-Advanced, and IMT-2020 collectively, as described in Resolution ITU-R 56-2;

d) Recommendation ITU-R M.2083, on the framework and objectives of the future development of IMT for 2020 and beyond;

e) that Report ITU-R M.2320 addresses future technology trends of terrestrial IMT systems;

f) Report ITU-R M.2376, on technical feasibility of IMT in the frequency bands above 6 GHz;

g) that Report ITU-R M.2370 analyses trends impacting future IMT traffic growth beyond the year 2020 and estimates global traffic demands for the period 2020 to 2030;

h) that there are ongoing studies within ITU-R on the propagation characteristics for mobile systems in higher frequency bands;

i) the relevance of provisions in Nos. 5.340, 5.516B, 5.547 and 5.553, which may need to be taken into account in studies;

j) that the FSS allocation in the frequency band 24.65-25.25 GHz was made by WRC-12, recognizing

a) that there is a lead time between the allocation of frequency bands by world radiocommunication conferences and the deployment of systems in those bands, and that timely availability of wide and contiguous blocks of spectrum is therefore important to support the development of IMT;

b) that frequency bands allocated to passive services on an exclusive basis are not suitable for an allocation to the mobile service;

c) that any identification of frequency bands for IMT should take into account the use of the bands by other services and the evolving needs of these services;

d) that there should be no additional regulatory or technical constraints imposed to services to which the band is currently allocated on a primary basis, resolves to invite ITU-R

1) to conduct and complete in time for WRC-19 the appropriate studies to determine the spectrum needs for the terrestrial component of IMT in the frequency range between 24.25 GHz and 86 GHz, taking into account: – technical and operational characteristics of terrestrial IMT systems that would operate in this frequency range, including the evolution of IMT through advances in technology and spectrally efficient techniques; – the deployment scenarios envisaged for IMT-2020 systems and the related requirements of high data traffic such as in dense urban areas and/or in peak times; – the needs of developing countries; – the time-frame in which spectrum would be needed;

2) to conduct and complete in time for WRC-19 the appropriate sharing and compatibility studies1, taking into account the protection of services to which the band is allocated on a primary basis, for the frequency bands:

- 24.25-27.5 GHz
- 37-40.5 GHz,
- 42.5-43.5 GHz,
- 45.5-47 GHz,
- 47.2-50.2 GHz,
- 50.4-52.6 GHz,
- 66-76 GHz and
- 81-86 GHz,

which have allocations to the mobile service on a primary basis; and -

- 31.8-33.4 GHz,
- 40.5-42.5 GHz and
- 47-47.2 GHz,

this may require additional allocations to the mobile service on a primary basis, further resolves

1) to invite CPM19-1 to define the date by which technical and operational characteristics needed for sharing and compatibility studies are to be available, to ensure that studies referred to in

resolves to invite ITU-R can be completed in time for consideration at WRC-19;

2) to invite WRC-19 to consider, based on the results of the above studies, additional spectrum allocations to the mobile service on a primary basis and to consider identification of frequency bands for the terrestrial component of IMT; the bands to be considered being limited to part or all of the bands listed in resolves to invite ITU-R 2, invites administrations to participate actively in these studies by submitting contributions to ITU-R.

1) Including studies with respect to services in adjacent bands, as appropriate.

2) When conducting studies in the band 24.5-27.5 GHz, to take into account the need to ensure the protection of existing earth stations and the deployment of future receiving earth stations under the EESS (space-to-Earth) and SRS (space-to-Earth) allocation in the frequency band 25.5-27 GHz.

No. 42021 183

4 SADC

The Southern African Development Community (SADC) Frequency Allocation Plan (FAP) creates a framework for harmonisation across SADC on the use of the radio frequency spectrum. Countries included in the SADC FAP are Angola, Botswana, Democratic Republic of the Congo, Lesotho, Malawi, Mauritius, Mozambique, Namibia, Seychelles, South Africa, Swaziland, Tanzania, Zambia and Zimbabwe.

The SADC FAP states "Whereas harmonisation is important, this could however take place on various levels namely allocation level, (e.g. mobile service), application level (e.g. cellular mobile) or on technology level (e.g. LTE or mobile WiMAX). Although the ITU spectrum harmonisation is generally limited to the first level, (i.e. radio communication services) it does occasionally also endeavour to harmonise certain applications. A noteworthy example is where a band is 'identified' for a specific application such as IMT. Although such identification does not establish any priority in the Radio Regulations, nor does it exclude the use of the particular frequency band for any other application within the same or other allocations, it does signal to the market the potential of harmonising the particular frequency band for the specified application. Within this application various technologies could then be deployed."

The 2010 SADC FAP was developed taking into account international best practice in the development of Frequency Band Plans and considering the needs of the SADC Members.

ITU Region 1 allocations and footnotes	SADC common allocation/s and relevant ITU footnotes	SADC proposed common sub- allocations / utilisation	Additional information
450-455 MHz FIXED	450-455 MHz FIXED	Fixed links (PTP) IMT (450-470 MHz) , PMR and/or PAMR	This band is currently used for a variety of fixed and mobile systems in the
MOBILE 5.286AA	MOBILE 5.286AA		various SADC.
5.209 5.271 5.286 5.286A 5.286B 5.286C 5.286D 5.286E	5.286 5.286A		This band is also identified for IMT (Res. 224 applies)
455-456 MHz	455-456 MHz		
FIXED	FIXED		
MOBILE 5.286AA	MOBILE 5.286AA		
5.209 5.271 5.286A 5.286B 5.286C 5.286E	5.209 5.286A		
456-459 MHz	456-459 MHz		
FIXED	FIXED		
MOBILE 5.286AA	MOBILE 5.286AA		
5.271 5.287 5.288	5.287		
459-460 MHz	459-460 MHz		
FIXED	FIXED		

Page 32/183

GOVERNMENT GAZETTE, 9 NOVEMBER 2018

[]			1
MOBILE 5.286AA	MOBILE 5.286AA		
5.209 5.271 5.286A 5.286B 5.286C 5.286E	5.209 5.286A		
460-470 MHz	460-470 MHz		
FIXED	FIXED		
MOBILE 5.286AA	MOBILE 5.286AA		
Meteorological satellite (space to Earth)	Meteorological satellite (space to Earth)		
5.287 5.288 5.289 5.290	5.287 5.289		
470-790 MHz	694-790MHz	MOBILE (IMT)	WRC 12 allocated the band
BROADCASTING 5.149 5.291A 5.294 5.296 5.300 5.304 5.306 5.311A 5.312 5.312A	BROADCASTING MOBILE aeronautical service 5.312A SADC 12 5.311A		to Mobile except aeronautical mobile on a co- primary basis with Broadcasting (WRC-12 Res 232 refers). The band was also identified for IMT. The mobile allocation is effective from 2015, immediately after WRC 15 and shall be subject to technical and regulatory conditions to be stipulated by WRC 15. SADC plans to implement IMT in the band immediately after WRC 15
790-862 MHz MOBILE except aeronautical mobile 5.316B 5.317A BROADCASTING 5.312 5.314 5.315 5.316	790-862 MHz MOBILE except aeronautical mobile 5.316B 5.317A BROADCASTING 5.314 5.315 5.316 5.316A 5.319	MOBILE (IMT)	Band IV/V analogue television to migrate to digital television according to SADC time lines. WRC-07 allocated this band to mobile except aeronautical mobile service and identified it for IMT. This band should be made available for IMT as soon as possible after the migration of analogue television to digital. This band needs to be harmonised in SADC for IMT; channelling plan to be developed for SADC region. Fixed links operating in this band will have to be migrated in order to accommodate IMT.
862-890 MHzFIXEDMOBILEaeronauticalexcept	862-890 MHz MOBILE except aeronautical mobile 5.317A	862-876 MHz IMT	The use of this band for IMT in the future to be investigated as part of the development of harmonised IMT channelling arrangements.

No. 42021 185

5.317A BROADCASTING 5.322 5.319 5.323 5.316A 5.319	SADC14	876-880 MHz IMT PMR and/or PAMR	This band is paired with 921-925 MHz The use of this band for IMT in the future to be investigated as part of the development of harmonised IMT channelling arrangement.
		880-915 MHz	Paired with 925-960 MHz
890-942 MHz	890-942 MHz	IMT	
FIXED		915-921 MHz	
MOBILE except	MOBILE except	PMR and/or PMR	
aeronautical mobile 5.317A	aeronautical mobile 5.317A	921-925 MHz	Paired with 876-880 MHz.
BROADCASTING 5.322	0.0177	IMT	
Radiolocation 5.323		PMR and/or PAMR	
		925-960 MHz	Paired with 880-915 MHz
		IMT	
942-960 MHz	942-960 MHz		
FIXED			
MOBILE except aeronautical mobile 5.317A	MOBILE except aeronautical mobile 5.317A		
BROADCASTING 5.322	5.322		
5.323			
1700-1710 MHz	1700-1710 MHz		
FIXED	FIXED	Fixed links (single	
METEOROLOGICAL- SATELLITE (space-to- Earth)	METEOROLOGICAL- SATELLITE (space-to- Earth)	frequency)	
MOBILE except aeronautical mobile	MOBILE except aeronautical mobile		
5.289 5.341	5.289 5.341		
1710-1930 MHz	1710-1930 MHz	1710-1785 MHz IMT	IMT
FIXED MOBILE 5.384A 5.388A	FIXED MOBILE 5.384A 5.388A	1785-1805 MHz BFWA	
5.388B	5.388B	1805-1880 MHz IMT	Paired with 1710-1785 MHz.
5.149 5.341 5.385 5.386 5.387 5.388	5.149 5.341 5.385 5.388	1880-1900 MHz	
/		FWA	
		Cordless telephone	
		1900-1920 MHz	
		FWA IMT (terrestrial)	

GOVERNMENT GAZETTE, 9 NOVEMBER 2018

1930-1979 MHz	1930-1979 MHz	1920-1980 MHz IMT	Paired with 2170-2200MHz
FIXED	FIXED	(terrestrial)	The development of satellites for IMT services to
MOBILE 5.388A 5.388B 5.388	MOBILE 5.388A 5.388B 5.388		be monitored
1970-1980 MHz	1970-1980 MHz		
FIXED	FIXED		
MOBILE 5.388A 5.388B 5.388	MOBILE 5.388A 5.388B 5.388		
2010-2025 MHz	2010-2025 MHz	IMT terrestrial (2010-	TDD
FIXED	FIXED	2025 MHz)	
MOBILE 5.388A 5.388B 5.388	MOBILE 5.388A 5.388B 5.388		
2110-2120 MHz	2110-2120 MHz	IMT (terrestrial)	Paired with 1920-1980 MHz
FIXED		(2110-2170 MHz)	
MOBILE 5.388A5.388B SPACE RESEARCH (deep space) (Earth-to- space) 5.388	MOBILE 5.388A5.388B SPACE RESEARCH (deep space) (Earth-to- space) 5.388		
2120-2160 MHz	2120-2160 MHz		
FIXED			
MOBILE 5.388A 5.388B 5.388	MOBILE 5.388A 5.388B 5.388		
2160-2170 MHz	2160-2170 MHz		
FIXED			
MOBILE 5.388A 5.388B 5.388	MOBILE 5.388A 5.388B 5.388		
2170-2200 MHz	2170-2200 MHz	IMT (satellite) (2170-	Paired with 1980-2010 MHz
FIXED		2200 MHz)	The development of satellites for IMT services to
MOBILE	MOBILE		be monitored.
MOBILE-SATELLITE (space-to-Earth) 5.351A	MOBILE-SATELLITE (space-to-Earth) 5.351A		
5.388 5.389A 5.389F	5.388 5.389A 5.389F		
2 200-2 290 MHz	2 200-2 290 MHz	Fixed links (2025-	Radio Frequency channel
SPACE OPERATION (space-to-Earth) (space- to-space)	SPACE OPERATION (space-to-Earth) (space- to-space)	2110 MHz paired with 2200-	arrangement according to ITU-RF. 1098.
EARTH EXPLORATION	EARTH EXPLORATION	2285 MHz)	
 SATELLITE (space-to- Earth) (space-to-space) 	– SATELLITE (space-to- Earth) (space-to-space)	BFWA (2 285-2 300 MHz)	
FIXED	FIXED		
MOBILE 5.391	SPACE RESEARCH		
SPACE RESEARCH (space-to-Earth) (space- to-space)	(space-to-Earth) (space- to-space)		
5.392	5.392		
2290-2300 MHz	FIXED	BFWA (2285-2300 MHz)	

No. 42021 187

FIXED			
MOBILE except aeronautical mobile	MOBILE except aeronautical mobile		
SPACE RESEARCH (deep space) (space-to- Earth)	SPACE RESEARCH (deep space)		
	(space-to-Earth)		
2300-2450	2300-2450	2300-2400 MHz	Fixed paired with 2400-2500
FIXED	FIXED	Fixed links	MHz.
MOBILE 5.384A	MOBILE 5.384A	PTP/PTMP	This band has been identified for IMT.
Amateur Radiolocation 5.150 5.282 5.395	Amateur Radiolocation 5.150 5.282	IMT (TDD) BFWA	
2500-2520 MHz	2500-2520 MHz	BFWA (2500-2690	The band 2500-2690 MHz is
FIXED 5.410	FIXED	MHz) IMT (2500-2690 MHz)	currently used mainly for BFWA. This band is also
MOBILE except aeronautical mobile	MOBILE except aeronautical mobile	WI 12)	allocated to the mobile service and identified for
5.384A	5.384A		IMT. This band needs to be harmonised in SADC for the
5.405 5.412			IMT channelling plan to be developed.
2520-2655 MHz	2520-2655 MHz		
FIXED 5.410	FIXED		
MOBILE except aeronautical mobile	MOBILE except aeronautical mobile		
5.384A	5.384A 5.339		
BROADCASTING- SATELLITE			
5.4135.416			
5.339 5.405 5.412 5.417C 5.417D 5.418B 5.418C			
2655-2670 MHz	2655-2670 MHz		
FIXED 5.410	FIXED		
MOBILE except aeronautical mobile 5.384A	MOBILE except aeronautical mobile 5.384A 5.149 5.412		
BROADCASTING- SATELLITE 5.208B 5.413 5.416 Earth exploration-satellite (passive)			
Radio astronomy Space research (passive)			
5.149 5.412			
2670-2690 MHz	2670-2690 MHz		
FIXED 5.410	FIXED		
MOBILE except	MOBILE except aeronautical mobile		
aeronautical mobile	5.384A		
5.384A	5.149 5.412		
Earth exploration-satellite			Bago 26/193

GOVERNMENT GAZETTE, 9 NOVEMBER 2018

(passive)			
Radio astronomy			
Space research passive)			
5.149 5.412			
3400-3600 MHz	3400-3600 MHz	BFWA	The band 3 400-3 600 MHz
FIXED	FIXED	IMT (3400-3600 MHz)	is currently used mainly for
FIXED-SATELLITE (space-	MOBILE except aeronautical mobile		BFWA. From 17 Nov 2010 this band is also allocated to the mobile service on a
to-Earth)	5.430A		primary basis and should be
Mobile 5.430A	SADC16		used for IMT in line with WRC-07 decisions.
Radiolocation			Because of the expected
5.431			high usage of BFWA and/or IMT applications in this band, satellite services should be accommodated above
			3 600 MHz. This band needs to be harmonised in SADC for the IMT channelling plan to be developed.

Table 2: Table showing SADC Frequency Allocations for IMT Bands

No. 42021 189

5 South Africa

5.1 The Electronic Communications Act

A review of the Electronic Communications Act of 2005 contained in the Government Gazette No. 28743, No. 36 of 2005, as well the Electronic Communications Amendment Act of 2014 contained in Government Gazette No. 37536, Act No. 1 of 2014 which together regulate electronic communications in the Republic of South Africa was carried out and the following sections were found to be of particular relevance.

5.1.1 Chapter 1: Introductory provisions

Object of Act

2. The primary object of this Act is to provide for the regulation of electronic communications in the Republic in the public interest and for that purpose to:

(a) promote and facilitate the convergence of telecommunications, broadcasting, information technologies and other services contemplated in this Act;

(b) promote and facilitate the development of interoperable and interconnected electronic networks, ensure the provision of the services contemplated in the Act and to create a technologically-neutral licensing framework;

(c) promote the universal provision of electronic communications networks and electronic communications services and connectivity for all;

(e) ensure efficient use of the radio frequency spectrum;

(f) ensure the provision of a variety of quality electronic communications services at reasonable prices; and

(h) promote stability in the ICT sector.

5.1.2 Chapter 2: Policy and regulations

Ministerial policy and policy directions

3. The Minister may make policies on national matters applicable to the ICT sector, consistent with the objectives of this Act and of the relevant legislation in relation to:

- (a) the radio frequency spectrum;
- (b) the universal service and access policy; and

(c)the Republic's obligations and undertakings under bilateral, multilateral or international treaties and conventions, including technical standards and frequency matters.

5.1.3 Chapter 5: Radio frequency spectrum

Control of radio frequency spectrum

30 (1) In carrying out its functions under this Act and the related legislation, the Authority controls, plans, administers and manages the use and licensing of the radio frequency spectrum except as provided for in section 34.

(2) In controlling, planning, administering, managing, licensing and assigning the use of the radio frequency spectrum, the Authority must:

(a) comply with the applicable standards and requirements of the ITU and its Radio Regulations, as agreed to or adopted by the Republic as well as with the national radio frequency plan contemplated in section 34;

(b) take into account modes of transmission and efficient utilisation of the radio frequency spectrum, including allowing shared use of radio frequency spectrum when interference can be eliminated or reduced to acceptable levels as determined by the Authority;

(c) give high priority to applications for radio frequency spectrum where the applicant proposes to utilise digital electronic communications facilities for the provision of broadcasting services, electronic communications services, electronic communications network services, and other services licensed in terms of this Act or provided in terms of a licence exemption;

(d) plan for the conversion of analogue uses of the radio frequency spectrum to digital, including the migration to digital broadcasting in the Authority's preparation and modification of the radio frequency spectrum plan; and

(e) give due regard to the radio frequency spectrum allocated to security services.

5.2 The Frequency Migration Regulations and Plan 2018

5.2.1 Principles governing frequency migration

5.2.1.1 Identification of bands which are subject to frequency migration

Bands are identified for radio frequency migration according to the following hierarchy:

- First Level where the ITU radio regulations / decisions of a World Radio Conference (WRC) require a change in national allocation that will require existing users to be migrated;
- Second Level where a Regional Radio Conference (RRC) requires a change in national allocation that necessitates existing users to be migrated;
- Third Level where the SADC FAP requires a change in national allocation that necessitates existing users to be migrated; and
- Fourth Level a decision is made to change the use of a frequency band at national level and this requires the migration of existing users.

No. 42021 191

Process

The process of frequency migration is carried out in a manner consistent with the radio frequency spectrum regulations and the generic process is described in the Frequency Migration Regulation (FMR) 2013.

The key processes are described in the Radio Frequency Spectrum Regulations (RFSR) 2011, and are as follows:

- Preparation of a RFSAP for the particular band or bands; and
- Amendment of a Radio Frequency Spectrum Licence where necessary.

When it has been established that migration is required, then the critical issue is to determine the time frame in a manner consistent with sound radio frequency spectrum management.

In some cases, it is necessary to carry out a feasibility study on the band in question. This is illustrated in the process flow indicated below.

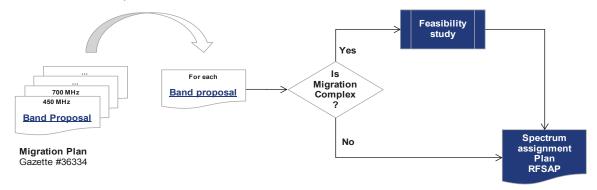


Figure 2: Process for developing an RFSAP

The requirement for a feasibility study is usually, but not necessarily, indicated in the FMP. Where the results of feasibility study indicate a change in the usage of the band in question, a RFSAP will be carried out.

The RFSAP will be subject to a consultation process.

The Frequency Migration Plan does not necessarily identify the destination bands for outmigrating users or uses because the appropriate destination band will vary from user to user, depending on the specific requirements of the user. The spectrum pricing regime is intended to facilitate this process and guide users to the 'optimal' choice.

Time frame for migration

In principle, the Authority can migrate a user to another location as part of sound radio frequency spectrum management. However, an appropriate time frame should be applied as a matter of standard practice.

In determining the time frame, the following factors are taken into account:

- the duration of the spectrum licence;
- the time frame to migrate existing customers (end-users);

- the economic life of the equipment installed; and
- adequate forward planning.

The forward-looking time frame for a process of spectrum migration is within 5 years from the moment of publication of this FMP unless the Authority states otherwise in a Notice.

5.3 South Africa Connect

'South Africa Connect: Creating Opportunities, Ensuring Inclusion' which is South Africa's Broadband Policy was brought into effect in November 2013 by the Department of Communications (DoC). The policy aims to create a seamless information infrastructure, which is accessible to and affordable for South Africans.

The overall goal is to achieve a universal average download speed of 100 Mbps by 2030. The 2020 vision for broadband is to provide 100% of South Africans with broadband services at 2.5% or less of the population's average monthly income⁴.

The objectives of the National Broadband Policy (NBP) are:

- affordable broadband available nationally to meet the diverse needs of public and private users, both formal and informal, consumers and citizens;
- policy and regulatory conditions that enable public and private sector players to invest and also contribute;
- public sector delivery, including e-government services, underpinned by the aggregation of broadband needs;
- that all public institutions at the national, provincial and municipal level should benefit from broadband connectivity and this should be extended to the communities they serve;
- to establish a framework such that public and private enterprises, formal and informal, are able to fully exploit the efficiencies offered by ubiquitous broadband and its potential for innovation;
- the development of a strong national skills base so that South Africa can perform as a proficient, globally-competitive and knowledgeable economy;
- a vibrant, creative software industry which produces content and applications which are relevant and meet the needs of the diverse users in the country; and
- a literate and skilled society that can effectively access services and content, including public information and public services.

The Broadband Policy proposed certain targets and timeframes for access to broadband in South Africa.

⁴ 2.5% of average monthly income is approximately R368.28, calculated from an average monthly income of R14731 for all formal and non-agricultural industries. Source: Statistics South Africa: Quarterly Employment Statistics (QES) March 2014

No. 42021 193

Target	Penetration Measure	Baseline (2013)	By 2016	By 2020	By 2030
Broadband access in Mbps user experience	% of population	33.7% internet access	50% at 5 Mbps	90% at 5Mbps 50% at 100Mbps	100% at 10 Mbps 80% at 100 Mbps
Schools	% schools	25% connected	50% at 10 Mbps	100% at 10Mbps 80% at 100 Mbps	100% at 1Gbps
Health facilities	% of health facilities	13% connected	50% at 10Mbps	100% at 10Mbps 80% at 100Mbps	100% at 1Gbps
Government facilities	% of Government offices		50% at 5Mbps	100% at 10Mbps	100% at 100Mbps

Table 3: National Broadband Policy Targets

The issues to be addressed when meeting the current targets are currently low penetration, high prices, and poor quality of service. The broadband Policy requires the Authority to monitor and evaluate set targets and comply with quality of service standards on an ongoing basis and report on them annually. The review of such targets falls within the domain of the Minister.

In Chapter 9 of the Broadband Policy, a gap analysis indicates a number of areas where there is a shortfall between the current status of the broadband ecosystem and the set targets. One of these areas is market structure and regulatory regime and on this issue, the policy states:

Despite the horizontal licensing regime introduced by the Electronic Communications Act of 2005, the market remains structured around vertically integrated incumbents, who have multiple licences, but continue to compete downstream with multiple service providers. This creates anti-competitive incentives in the market and requires a resource-intensive regulatory regime, where the regulator is constantly required to adjust the behaviour of the incumbents. The wholesale open access regime will also address the structural constraints in the market arising from the dominance of a number of vertically integrated operators. Re-structuring the market to enable greater wholesale access to networks by service providers will go a long way to creating a more competitive services sector, which is likely to enhance quality and drive down prices.

In terms of the gap in infrastructure reach, the broadband policy highlights that:

The real gap is in the last-mile local loop infrastructure. In high demand metropolitan areas there is considerable duplication of infrastructure, but outside these areas, ADSL is limited. The delay in releasing spectrum and the cost of building out high-speed, next generation networks to low demand areas, means that the substitution of mobile broadband for ADSL is not as prevalent as it is in metropolitan areas.

In terms of spectrum, the Broadband Policy identifies the following gap:

With the increasing reliance on mobile or wireless communications, there is more demand than ever for radio spectrum – the invisible wavelengths or frequencies by which services such as broadcasting and mobile communications can be transmitted.

Policy and regulatory bottlenecks associated with spectrum assignment, together with delays in the migration of land analogue broadcasting to digital, have meant that service innovation, increased competition, potential job opportunities and tax revenues have not been realised. The efficient assignment and subsequent use of high demand spectrum to meet this demand is vital and the cost of making this spectrum available is vital and the cost of not doing so is high.

In terms of Access networks, a gap related to spectrum was also identified and is noted below:

Extending broadband access is dependent on allocation of high demand spectrum.

Digital future is also another solution to closing identified gaps and aims to:

Enable sharing and co-operation on open access network builds and operations through ensuring economies of scale, reducing risk and guaranteeing returns.

The current status of broadband infrastructure networks with respect to spectrum is outlined in South Africa's Broadband Policy as shown below:

Spectrum is a scarce but non-depleting resource that has to be managed efficiently in order to optimise its potential to provide broadband access. This is especially pertinent given the dominance of mobile access in South Africa. Fixed wireless access also requires spectrum and represents an alternative to fixed-line networks to provide high capacity broadband especially in rural areas.

The immediate priorities with respect to spectrum are:

- identification of unused spectrum and its reassignment;
- the removal of bottlenecks preventing migration of terrestrial broadcasters from analogue to digital in order to realise the digital dividend;
- the re-allocation and assignment of broadband spectrum, taking into consideration job creation, small business development, national empowerment and the promotion of NDP goals;

- approval of spectrum-sharing between spectrum licensees and across services by the Authority in support of efficient use of spectrum and where it does not impact negatively on competition;
- the enabling of dynamic spectrum allocation; and
- ensuring sufficient spectrum for extensive Wi-Fi and other public access technologies and services.

It is Government's objective to ensure that access to broadband for all is attained. Therefore, licensing of broadband spectrum should contribute to the realisation of the following public interest policy objectives:

- The achievement of universal access to broadband;
- Effective and efficient use of high demand spectrum;
- Adoption of open access principles;
- Safeguard the spectrum commons and spectrum required for public access technologies and services; and
- The promotion of broader national development goals of job creation, the development of small and medium-sized businesses and South African-owned and controlled companies, and the broad-based economic empowerment of historically-disadvantaged persons.

If required, as part of the strategy to meet national broadband requirements, sufficient spectrum will be set aside for the creation of a national Wireless Open Access Network (WOAN).

Important policy decisions stemming from the Broadband Policy which affect spectrum are identified and listed below:

Issue	Action
Spectrum delay in allocating broadband spectrum,	ICASA to engage with the New Ministry
Appointment of a Broadband Council	The Minister of Communications appointed a Broadband Council to advice on the implementation
	of policy and emerging policy issues.

Table 4: Policy decisions from the broadband policy

The broadband policy also proposes a roadmap for public and private investment in the next generation broadband network. Part of this roadmap deals with a wireless broadband open access network and is highlighted below:

The speed of deployment of a wireless network is a fundamental consideration to meet the immediate challenge of meeting the targets of this policy. The Ministerial policy directive will consider as a priority how best to ensure that the release of high demand spectrum fulfils these policy objectives and specifically

how best the application of open access principles to the assignment of broadband spectrum will be achieved. The outcome should:

- maximize the efficiency with which spectrum is used and minimize the costs of deployment of wireless broadband capacity with national coverage;
- provide a neutral, non-discriminatory platform or effectively-regulated, competing platforms providing wholesale access on which competition can take place between multiple service providers at the retail level; and
- pool and share existing network assets.

Enabling conditions for a national wireless network in the high demand bands are:

- access to a portfolio of spectrum that includes adequate and sufficient capacity to be able to provide both capacity and coverage efficiently and economically from dense urban to rural areas;
- use of existing facilities wherever possible (e.g. base station locations, fibre links for backhaul and long distance connectivity) to minimize its costs through infrastructure sharing;
- cost-based, non-discriminatory access regime for service providers, allowing them to compete fairly in the market and recoup their investments; and
- spectrum allocation that is apportioned to ensure the viability of possible new entrants in a fair, competitive environment, whilst encouraging competition and taking account of the broader interests of existing licence holders.

Key success factor:

- In an environment in which the level of Government's direct financial contributions are constrained, attracting enough investment to deploy the network/s and the use or sharing of existing facilities to minimize the deployment costs;
- Realistic coverage targets so the costs do not balloon out of control relative to any conceivable revenue stream;
- Pricing incentives to attract users;
- Support from the highest levels of Government;
- Long term financial horizon for return on investment; and
- Assignment of adequate spectrum to ensure the viability of new entrants while advancing industry competitiveness in infrastructure provision.

5.4 RECOMMENDATION ITU-R M.2083-0.

This document describe the IMT Vision – Framework and overall objectives of the future development of IMT for 2020 and beyond. South Africa need to look in detail into this recommendation of which a copy is included in Appendix H to this document. **Global Trends for IMT**

5.5 Global assignment objectives for IMT

In planning the implementation of IMT, the following objectives are desirable to:

- ensure that frequency arrangements for the implementation of IMT have longevity, yet allow for the evolution of technology;
- facilitate the deployment of IMT, subject to market considerations and facilitate the development and growth of IMT;
- minimise the impact on other systems and services within, and adjacent to, the bands identified for IMT;
- facilitate worldwide roaming of IMT terminals;
- integrate the terrestrial and satellite components of IMT efficiently;
- optimise the efficiency of spectrum utilisation within the bands identified for IMT;
- enable the possibility of competition;
- facilitate the deployment and use of IMT, including fixed and other special applications in developing countries and in sparsely-populated areas;
- accommodate various types of traffic and traffic mixes;
- facilitate the continuing worldwide development of equipment standards;
- facilitate access to services globally within the framework of IMT;
- minimise terminal costs, size and power consumption, where appropriate and consistent with other requirements;
- facilitate the evolution of pre-IMT-2000 systems to any of the IMT terrestrial radio interfaces and to facilitate the ongoing evolution of the IMT systems themselves;
- afford flexibility to administrations, as the identification of several bands for IMT allows administrations to choose the best band or parts of bands for their circumstances;
- facilitate determination, at a national level, of how much spectrum to make available for IMT from within the identified bands;
- facilitate determination of the timing of availability and use of the bands identified for IMT, in order to meet particular user demand and other national considerations;
- facilitate development of transition plans tailored to the evolution of existing systems;
- have the ability, for the identified bands based on national utilisation plans, to be used by all services having allocations in those bands.

The following guiding principles have been applied in determining frequency arrangements:

- harmonisation;
- technical considerations; and
- spectrum efficiency.

5.6 IMT and Long Term Evolution (LTE)

The number of IMT frequency bands has increased significantly in the last several years with the progress of the ITU's IMT spectrum planning.

The potential IMT technologies are LTE, LTE-advanced and WiMAX, with a clear trend towards LTE both from the point of view of the available ecosystem and the choices made by operators.

5.7 LTE - paired and unpaired spectrum (FDD and TDD)

5.7.1 FDD and TDD trends

In the past, the majority of bands were assigned to FDD, with limited TDD spectrum in between the FDD assigned sub-bands or in higher ranges. Recently, the amount of spectrum assigned for TDD has increased, however, on the whole, there is still a gap between TDD and FDD, and there is still relatively little spectrum for TDD in lower frequency bands.

A key requirement for the future is for chipsets and terminals to support multi-band frequencies to meet the requirements of global frequency distribution. At the same time, to achieve economies of scale and global roaming, it will also be required for terminals to support multi-mode, especially LTE FDD and TDD. The technologies for LTE TDD multi-mode, multi-band Smart phones and multi-band LTE TDD dongles and CPEs are maturing and increasingly becoming commercially available.

The majority of assigned spectrum is paired FDD leading to the establishment of a complete and end-to-end industry chain involving widespread participation of global industries and highly matured products including system equipment, chipsets, user devices and test instruments. Currently 288 FDD networks are in commercial operation worldwide, (as compared with 36 TDD networks, although both are steadily increasing).

However, LTE TDD is already a mainstream technology supported by a well-established and fast-growing ecosystem. The number of operators deploying commercial LTE TDD systems, or engaged in trials and studies, is steadily increasing. For example, China Mobile is building the world's largest LTE TDD network.

While a large amount of low and medium frequency spectrum (generally suitable for wide coverage) has been allocated for FDD, the same cannot be said for TDD. There is a general trend for higher downlink provision; therefore the high downlink capacity densities which can be achieved by the larger downlink bandwidth available via TDD bandwidth, favour schemes at higher frequencies resulting in lower coverage cell areas and a consequent larger number of sites. This is the reason why 100 MHz bandwidth in 2300 MHz and 200 MHz bandwidth in 3400-3600 MHz has been allocated to TDD.

The LTE TDD terminal has evolved from a data-only terminal to a mobile terminal. It is expected that during 2014, LTE TDD smart phones will be available commercially on a large scale.

No. 42021 199

5.7.2 Flexible spectrum utilisation

Unpaired spectrum is much easier to release than paired spectrum. This benefit is becoming increasingly important as the globally available supply of spectrum falls, meaning the process of releasing new spectrum can be greatly accelerated by designating it as unpaired TDD.

Capacity benefits of unpaired spectrum are realised in the size of available TDD spectrum bands often allocated in large blocks. From a capacity perspective, this is an advantage over the typical 2×10 MHz configuration found in paired FDD spectrum. The current LTE bandwidth limit is 20 MHz and most equipment could spread power of ~80 W over ~40 MHz bandwidth depending on the frequency range. Therefore, 40 MHz assignments per operator might be cost-efficient, but this would be hard to assign in multi-operator environments. Therefore, it might be advantageous to have one wholesale operator or active Radio Access Network (RAN) sharing involving a number of mobile network operators in TDD spectrum.

In addition, the unpaired TDD spectrum band should not be fragmented with FDD spectrum due to the requirement of a guard band of ~5 MHz between the bands, which is generally taken from the TDD spectrum. Instead of guard bands, the boundary ranges might be used indoors only due to higher penetration losses. Special spectrum assignments for TDD could be used within the duplex gap larger than 15 MHz.

5.7.3 High spectral efficiency for adaptive uplink /downlink configuration

The asymmetric nature of TDD brings a number of advantages. One key advantage of this is the flexibility it allows in the adjustment of the downlink and uplink resource ratios. Commonly employed, downlink-to-uplink ratios are 8:1, 3:1, 2:2 and 1:3 and the heavily downlink-oriented configuration fits perfectly with current user behaviour, where streaming and downloads take up a high proportion of downlink resources.

Cisco predicts a dramatic increase in the downlink-centric applications. Based on this prediction, the downlink-centric application will generate more than 90% of the mobile traffic in 2017. Therefore, unpaired spectrum is best suited for the user behaviour of the mobile broadband era.

Unpaired LTE is also optimally suited to cover future M2M and 'Internet of Things' demands which will be predominantly uplink-oriented. Also, video uploads from closed-circuit television (CCTV) result in a higher uplink bandwidth capacity requirement which have to be taken into account in specialised schemes.

Due to desensitisation of receivers in case of transmission into neighbouring bands, it is not possible to have different unpaired spectrum configuration schemes in the same band (without guard bands - which are spectrum-inefficient). Therefore, it is expected to have different bands for uplink-oriented and downlink-oriented configurations, e.g., the 450 MHz band, 700 MHz band, 2100 MHz band or 2600 MHz band with reduced bandwidths of maximum 40 MHz for uplink while the 2300 MHz band and 3500 MHz band have 100-200 MHz bandwidths for downlink. In the 3400-3600 MHz bands, there is also a possible differentiation in two sub-bands which might be separated by a 5 MHz guard band.

GOVERNMENT GAZETTE, 9 NOVEMBER 2018

In South Africa, the Authority is evaluating the concept of managed spectrum parks, which as a whole have to cater for protection with neighbour bands. Three potential solutions exist depending on uplink and downlink requirements within the 3400-3600 MHz band. The downlink schemes suffer from reduced uplink cell coverage required for reverse control channel communications; therefore, downlink should be placed in the lower parts of this band while the uplink schemes are placed in the upper parts of the band. In general, higher demand can be foreseen for downlink; therefore, the spectrum also favours downlink schemes, e.g., 140 MHz for downlink vs. 40 MHz for uplink. Some part of the spectrum might only be used indoors or, with reduced transmission powers, to protect the other unpaired TDD schemes. The minimum guard band of 5 MHz is increased (just as an example) to 20 MHz for any managed spectrum park concept usage (noting that the ultimate location of the guard band would be determined in the event managed spectrum parks are introduced⁵).

The IMT3500 band decision for downlink or uplink configurations could be done later based on the traffic expectations at that time. The Authority intends to assign special uplink or downlink configurations to minimize guard bands. The operators might decide on their individual business cases.

The Block Edge Masks might be investigated in order to allow unsynchronized usage or to minimize the need for guard bands. The managed spectrum park concept should be decided later as well.

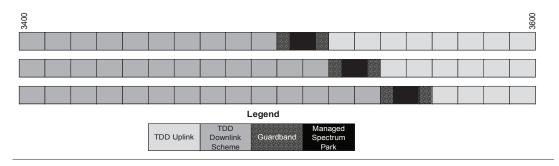


Figure 3: Potential unpaired LTE assignments in 3400-3600 MHz

According to downlink or uplink schemes; potential managed spectrum park realisation in the guard band

5.7.4 Deployment issues

One advantage of unpaired over paired spectrum has been that operators have historically been able to pay less for paired spectrum than unpaired spectrum (although this is changing).

⁵ Note that beyond the example given here, managed spectrum parks could also be introduced in TDD bands within 2100 MHz.

No. 42021 201

However, to cover the same area with the same uplink performance, the TDD systems in downlink-oriented configurations need more sites than FDD because the limiting terminal power and the reduced transmission time decrease the coverage in uplink. Therefore, in TDD, a higher number of antennas are used in higher bands for diversity gains or multiple-input and multiple-output (MIMO) usage to compensate uplink performance deficits.

Or to put it another way, for a lower band such as the 450 MHz band good propagation conditions together with uplink-oriented configuration schemes are quite beneficial, so no higher order MIMO or beamforming is needed. In higher bands, such as the 3500 MHz band with poor propagation and downlink-oriented configuration, the cell sizes decrease significantly. Higher order beamforming / MIMO would be more needed, especially due to reduced antenna dimension size. In higher bands, the reduced cell size is generally not an issue, because deployments will be more capacity-oriented and capacity density is higher.

5.7.5 Interference suppression

Thanks to uplink and downlink channel reciprocity (ensured by the fact that the same portion of spectrum is used in both link directions); TDD technology has unique coordination abilities, such as beamforming, which improves system performance by utilising channel-state information to achieve transmit-array gain. Results show that, across the 3GPP standard in Release 8~10, single-layer, dual-layer and multi-user beamforming can generate a cell throughput gain of 15%. Adoption of beamforming and Coordinated Multi-Points (CoMP), called 'Co-ordinated beamforming' (CBF), can further enhance network performance because interference is mitigated between inter-eNodeBs.

5.8 Future system requirements for IMT / LTE & IMT2020 networks

According to the 3GPP, in LTE-Advanced, the focus is on higher capacity. The motivation for further developing LTE towards LTE-Advanced is to provide higher bit-rates in a cost-efficient manner and, fulfil the requirements set by the ITU for IMT Advanced as shown below:

- Increased peak data rate, downlink 3 Gbps, uplink 1.5 Gbps;
- Higher spectral efficiency, from a maximum of 16 bps/Hz in Release 8 (R8) to 30 bps/Hz in Release 10 (R10);
- Increased number of simultaneously-active subscribers;
- Improved performance at cell edges, e.g. for downlink 2×2 MIMO > 2.40 bps/Hz/cell; and
- Enabled Carrier Aggregation (CA), enhanced use of multi-antenna techniques and support for Relay Nodes (RN).

As LTE-Advanced continues to evolve, new CA configurations are added and new features are introduced in upcoming releases of the 3GPP specifications, such as Coordinated Multi Point (CoMP) introduced in Release 11 (R11).

The main reason for introducing CoMP is to improve network performance at cell edges.

GOVERNMENT GAZETTE, 9 NOVEMBER 2018

IMT2020 standards are not yet finalised and the most advanced services are still in the pre-commercial phase. In fact, we probably won't see any commercial IMT2020 services before at least 2020, so it's impossible to say definitively what speeds will be reachable.

However, they will be significantly ahead of what's currently available with 4G. A minimum expectation for commercial IMT2020 services is for them to be tens of times faster than 4G, which would make even current broadband speeds look sluggish in comparison.

And while the exact speeds are yet to be finalised, early tests are already achieving remarkable results and these give us a good idea of what we can expect when <u>IMT2020</u> finally launches.

DOWNLOAD SPEEDS

The Next Generation Mobile Networks alliance states that for something to be considered IMT2020 it must offer data rates of several tens of megabits per second to tens of thousands of users simultaneously, while a minimum of 1 gigabit per second should be offered to tens of workers on the same office floor.

That's all a little vague, but the signs are promising. Some estimates put download speeds at up to **1000 times faster than 4G**, potentially exceeding 10Gbps. That would enable you to download an entire HD film in less than a second.

Network Type	Download Speeds
3G Network	384Kbps
4G Network	100Mbps
IMT2020 Network	1-10Gbps (theoretical)

Some sources, such as The Korea Times, even reckon IMT2020 networks will be capable of transmitting data at up to 20Gbps. To put that in context, while LTE-A can theoretically achieve speeds of around 300Mbps, you're not likely to get more than around 42Mbps in reality and standard 4G has real world speeds of just around 14Mbps.

Nokia's thoughts are similarly ambitious, with the company suggesting that you'll be able to stream 8K video in 3D over IMT2020.

Some estimates are more conservative though, but even the most conservative estimates put it at several dozen times faster than 4G.

Already IMT2020 trials are taking place, with Verizon in the US for example showing that its technology can achieve download speeds of 30-50 times faster than 4G. That would enable you to download a full movie in around 15 seconds, versus around 6 minutes on 4G.

No. 42021 203

The IMT2020 Innovation Centre has achieved even higher speeds in test environments, of around 1 terabit per second (1Tbps). That's roughly 65,000 times faster than typical 4G speeds and would enable you to download a file around 100 times larger than a full movie in just 3 seconds.

However, that's unlikely to be replicated in the real world. Indeed, in an actual-use environment (rather than a specially built test site), DOCOMO has recorded speeds in excess of 2Gbps, which is still extremely impressive. Closer to home, EE has begun trialling IMT2020 speeds of 1Gbps.

Ofcom for its part sees IMT2020 as achieving real world speeds of between 10 and 50Gbps, which is insanely fast whichever end of the scale it ends up at. In short, it's clear that it will leave 4G in its dust.

UPLOAD SPEEDS

Estimates of upload speeds are so far vaguer than those for IMT2020 download speeds, but the consensus is that you'll be able to upload data at many gigabits per second, possibly up to 10Gbps.

The exact upload speed will of course be tied to the download speed though and whatever download speed is offered uploads will be slower, likely coming in at no more than half the download speed.

LATE	NCY	TIME	

Network Type	Milliseconds (ms)
3G Network	120ms (actual)
4G Network	45ms (actual)
IMT2020 Network	1ms (theoretical)

Latency is how long it takes the network to respond to a request, which could be you trying to play a song or video or load a website for example. It has to respond before it even starts loading, which can lead to minor but perceptible lag and is especially problematic for online games, as each input has a new response time.

Over 3G those response times are typically around 120 milliseconds and on 4G they're less than half that at between roughly 15 and 60 milliseconds. The theory is that on IMT2020 response times will drop to just 1 millisecond, which will be completely imperceptible.

That will help with all the things we use data for now, but more than that it's necessary for new mobile data uses, such as self-driving cars, which need to respond to inputs and changes in situation immediately.

That will help with all the things we use data for now, but more than that it's necessary for new mobile data uses, such as self-driving cars, which need to respond to inputs and changes in situation immediately.

No. 42021 205

6 Forecasts for South Africa

6.1 Forecasts of overall IMT demand

In Report ITU-R M.2290-0 (12/2013) future spectrum requirements are estimated for terrestrial IMT. From this report it is clear that the growth in mobile traffic is expected to increase over the next few years. In order to reflect the increasing traffic demand, new, updated market attributes for the lower user density and higher user density settings are provided.

In 'Report ITU-R M.2078-0 (2006), Estimated spectrum bandwidth requirements for the future development of IMT-2000 and IMT-Advanced', the new traffic volumes for the spectrum requirement estimations in 2020 are derived by considering traffic growth ratios from the market studies presented in 'Report ITU-R M.2243-0 (2011) Assessment of the global mobile broadband deployments and forecasts for International Mobile Telecommunications'. The report relies on several mobile traffic forecasts beyond 2010, provided by different organisations. Most of these forecasts consider mobile traffic in the years 2011-2015, while only one makes projections for the year 2020, anticipating a 33-fold traffic growth ratio in 2020 compared with 2010.

It should be noted that the 2nd-order polynomial function estimates conservative traffic growth, while the 3rd and 4th-order polynomial functions provide more aggressive growth corresponding to approximately 40 to 170-fold and 80 to 240-fold growth ratios, respectively.

The spectrum requirements are distributed and calculated for Radio Access Technology Group 1 (RATG 1) (i.e. pre-IMT, IMT-2000 and its enhancements) and RATG 2 (i.e. IMT-Advanced) for the year 2020.

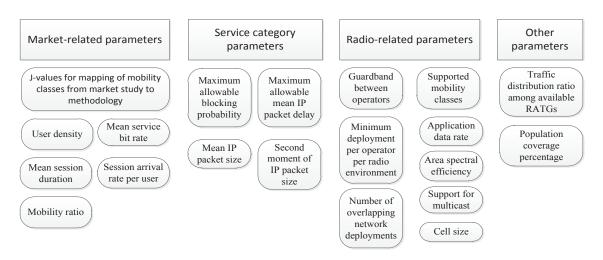


Figure 4: Input parameter overview for IMT spectrum demand estimation

The use of two market settings, lower and higher user density settings, allows for modelling of the differences in markets between different countries. The two settings will

```
206 No. 42021
```

result in two final spectrum requirements for IMT systems and the needs of the different countries could lie between these two extremes.

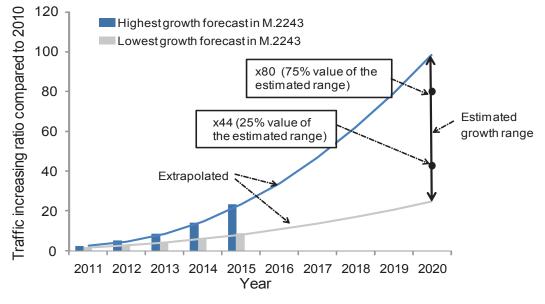


Figure 5: Mobile traffic forecasts toward 2020 by extrapolation (Source: ITU)

Table 5 depicts the Radio Parameters for RATG 1 (pre-IMT2000, IMT2000) whilst Table 6: Radio parameters for RATG 2 (IMT advanced)

In Table 7 the spectral efficiency parameters for RATG1 and RATG 2 (IMT-Advanced) are shown, indicating spectral densities, which generate the capabilities of the networks. Based on these (and further parameters) the overall spectrum demand is estimated and provided in Table 8.

The spectrum efficiency values are to be used only for spectrum requirement estimations given in 'Recommendation ITU-R M.1768-1 (04/13) 'Methodology for calculation of spectrum requirements for the terrestrial component of International Mobile Telecommunications'. These values are based on a full buffer traffic model in accordance with 'Report ITU-R M.2135-1 (2009) Guidelines for evaluation of radio interface technologies for IMT-Advanced'. In practice, such spectrum efficiency values are unlikely to be achieved due to the random nature of traffic, errors caused by radio channel conditions or packet losses. This means, if too high capacity assumptions are used, this will lead to lower spectrum demands. On the contrary, not all applications need 20 Mbps. Therefore, the results given in Table 8 should be used as a general indication of how much spectrum is needed, even if it might be in 2025 instead of 2020.

No. 42021 207

Parameters	Macro cell	Micro cell	Pico cell	Hot spot
Application data rate (Mbps)	20	40	40	40
Supported mobility classes	Stationary/ pedestrian, low, high	Stationary/ pedestrian, low	Stationary/ pedestrian	Stationary/ pedestrian
Guard band between operators (MHz)	0			
Minimum deployment per operator per radio environment (MHz)	20	20	20	20
Granularity of deployment per operator per radio environment (MHz)	20	20	20	20
Support for multicast	Yes			
Number of overlapping network deployment	1			

Table 5: Radio parameters for RATG 1 (pre-IMT2000, IMT2000):

Parameters	Macro cell	Micro cell	Pico cell	Hot spot
Application data rate (Mbps)	50	100	1 000	1 000
Supported mobility classes	Stationary/ pedestrian, low, high	Stationary/ pedestrian, low	Stationary/ pedestrian	Stationary/ pedestrian
Guard band between operators (MHz)	0			
Support for multicast		Ye	es	
Minimum deployment per operator per radio environment (MHz)	20	20	120	120
Granularity of deployment per operator per radio environment (MHz)	20	20	20	20
Number of overlapping network deployment			1	

Table 6: Radio parameters for RATG 2 (IMT advanced)

RATG1: Unicast area spectral efficiency (bit/s/Hz/cell)						
Tele	I	Radio environments				
density	Macro cell					
Dense urban	2	4	4	4		
Suburban	2	4	4	4		
Rural	2	4	4	4		

RATG2: Unicast area spectral efficiency (bit/s/Hz/cell)						
Tele		Radio environmentsMacroMicroPicoHotcellcellcellspot				
density						
Dense urban	4	5	5	7.3		
Suburban	4	5	5	7.3		
Rural	4	5	5	7.3		
Dense urban	4	5	5	7.3		

Table 7: Spectral efficiency parameters for RATG1 and RATG 2 (IMT advanced)

	Total spectrum requirements for RATG 1	Total spectrum requirements for RATG 2	Total spectrum requirements RATGs 1 and 2
Lower user density settings	440 MHz	900 MHz	1 340 MHz
Higher user density settings	540 MHz	1 420 MHz	1 960 MHz

 Table 8: Total spectrum requirements for both RATG 1 (pre-IMT2000, IMT2000) and RATG 2 (IMT advanced) in the year 2020

In South Africa, 380 MHz are currently used for IMT (including UMTS and LTE) and 80 MHz for GSM. In 2020, more than 1011-1036 MHz could be used for IMT (incl. GSM) depending on the decisions on 700-800 MHz band usage.

This overview includes additional spectrum of 120 MHz in the 694-862 MHz band, 190 MHz in the 2500-2690 MHz band and 200 MHz in the 3400-3600 MHz band. The potential assignments that could be made in the short term within the years 2015-2020 provide for more than the current spectrum usage (510 MHz > 380 MHz) for a traffic ~5 times than today (Figure 5).

Further spectrum beyond 3600 MHz was not considered herein, but might be available for IMT (3600-4200 MHz) or Wi-Fi applications (e.g. within 5100-5900 MHz). As a result, potential gaps between the assumptions within Table 8 could be closed from 2020 onwards with this additional spectrum.

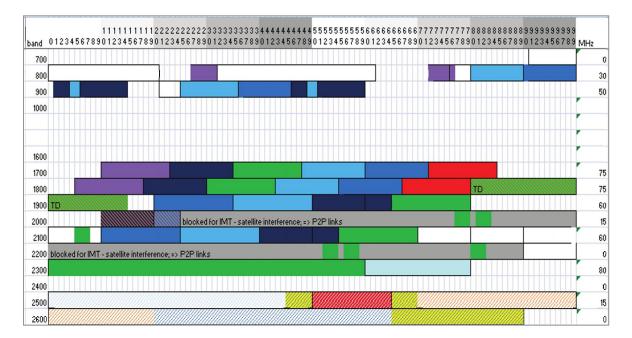


Figure 6: Current South Africa IMT assignments summarised in Table 9

No. 42021 209

IMT s	pectru	m (ind	cl GS	SM)													
MHz	400	700	800	900	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	3400	3500	sum
2014	0	0	30	50	75	75	60	15	60	0	80	0	15	0	0	0	460
2020	15	87	69	50	75	75	60	15	60	0	100	15	100	90	100	100	1011

Table 9: South Africa IMT spectrum assignments

These figures should not be taken into account in the evaluation of special spectrum use or prioritisation of different bands. 10-15 MHz in 450-470 MHz band does not give sufficient capacity compared to the overall amount of spectrum, but it has enormous benefits in terms of coverage and therefore reduces the level of required capital investment compared to the (rural) rollout of 10-15 MHz in 2600 MHz or 3500 MHz bands. For the SA Connect targets, the 450-470 MHz spectrum may be essential in order to cover a greater population in rural and commercially, less attractive areas. Compared with the 450 MHz band, 55-85% more sites are needed in 700 MHz, and even more in higher bands. It is of no value to compare the deployment costs of a 3500 MHz network in the same rural areas with a 450 MHz network because this scenario is unrealistic. If, in rural areas, the demands increase steadily, (with higher smart phone penetration for example), operators could reuse the existing 450 MHz sites for 700-3500 MHz cells and add some hotspot sites. The coverage improvement reduces with larger separation of the coverage areas, consequently in the case of largely separated populations, each location may need its own base station independent from the band - such deployments would be quite expensive.

6.1.1 Forecast of overall M2M demand

Operators are investing in new digital services, such as the 'Internet of Things' (IoT) and M2M, in order to compensate for declining revenue from traditional services. M2M represents a relatively small opportunity in terms of revenue, but one that is growing significantly and which opens up a multitude of new applications and services. Operators have been particularly interested in servicing the demand for M2M solutions and this market is growing.

Connectivity is pivotal, but subject to intense competition. Connectivity underpins M2M and IoT services but it is subject to competition from a large number of players providing fixed and mobile connectivity as well as a growing number of short-range technologies. Operators have recognised this trend and some are positioning themselves in other key areas of the value chain in order to provide an end-to-end service to customers.

- Potential M2M solutions:
- Utilities metering applications especially in the energy sector;
- Security alarm and sensor applications;
- Government: surveillance, police and fire fighter response;
- Healthcare monitoring applications;
- Automotive and transport connected car applications, fleet tracking;
- Industrial monitoring applications; and

- Retail Point-of-Sale (PoS) terminals According to one research forecast report⁶, the future worldwide development of M2M application might look like the following:
- At the end of 2013, there were approximately 0.3 billion M2M device connections worldwide
- It is forecast that there will be an increase to 3.4 billion device connections by 2024, indicating a CAGR of 28% over the 10-year period;
- Utilities is both the biggest and the fastest-growing sector in terms of M2M connections; it will account for 59% of all M2M device connections by 2024
- The second fastest growing sector is the automotive and transport sector; and by 2024, overall M2M device connections from this sector are expected to be 26% of the overall device connections
- Security sector solutions are expected to make up 10% of overall M2M device connections by 2024
- The remaining 5% of M2M device connections in 2024 will be accounted for by the healthcare, industrial, retail, financial services and public sectors

Figure 7: M2M device connections by sector, worldwide, 2013–2024

(Source: Analysis Mason, 2014)

⁶ Analysys Mason Research Forecast Report – 'M2M device connections and revenue: worldwide forecast 2014–2024' July 2014 – updated from the draft IMT Roadmap based on feedback

No. 42021 211

6.2 IMT Demand for South Africa

The demand for high-speed Internet capabilities, such as those offered by IMT, is growing in South Africa. The targets for download speed outlined in the National Broadband Policy are also a factor that will drive up the demand for IMT.

One area of growth is in the uptake of devices with LTE capabilities. According to the Ovum Small and Medium Enterprise (SME) Insights Survey conducted early in 2013, 51% of South African SMEs provide smart phones to their employees, while 62% supply tablet devices. Regular or feature phones accounted for 31% of responses and dongles or laptops with integrated cellular connectivity accounting for 23%.

Evidently, South African SMEs see the whole range of mobile communications services as important to their businesses but place a particular value on high-end devices.

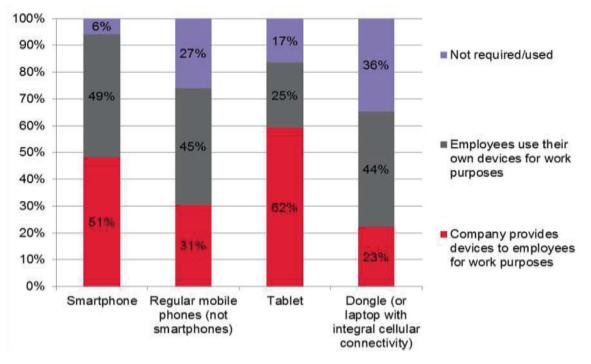
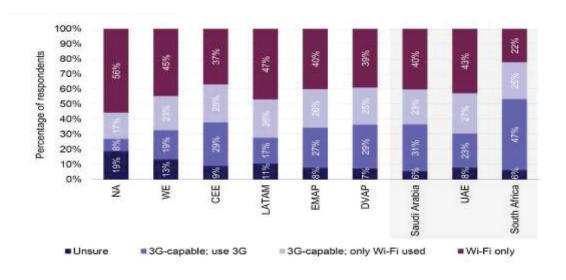


Figure 8: South Africans favour tablets and smart phones


(Source: Ovum)

In a comment article by Analysys Mason (Tablet Survey highlights South Africa's demand for Tablet Cellular connectivity and the impact of 18-24 year old users), South Africa has been proven to be a particularly 'high-mobility' market for tablet users.

According to the survey, only 34% of tablet users in this market use tablets exclusively at home, compared with the 66% who use them partially or exclusively out of the home, while on the move.

Results from the survey also show that the number of tablet users connecting to the cellular network directly from their tablets is already relatively high in South Africa, compared with other countries they surveyed worldwide. Some 47% of South African respondents had a 3G/4G-connectable tablet and used it on the cellular network.

GOVERNMENT GAZETTE, 9 NOVEMBER 2018

¹ Question: "Is your tablet 3G/4G compatible, or is it only able to support Wi-Fi connectivity?", Key: CEE = Central and Eastern Europe; DVAP = Developed Asia-Pacific; EMAP = Emerging Asia-Pacific; LATAM = Latin America; NA = North America; WE = Western Europe.

Figure 9: Tablet respondents by type of connectivity enabled on their device, by country in MEA and by region

(Source: Analysys Mason)

A South African telecoms market report by Analysys Mason indicates over 11 million smart phone connections and over 4 million mobile broadband subscribers by the 3rd quarter of 2013. This growth in subscribers coincides with a commercial launch of LTE by mobile network operators between late 2012 and early 2013, which again shows the demand for LTE and IMT services is growing.

		2009	2010	2011	2012	September 2013
	Mobile subscribers (active SIMs)	46 861 000	49 475 000	59 015 000	66 610 000	69 272 000
	Mobile penetration (percentage of population)	91.6 %	95.7 %	113.1 %	126.7 %	131.0 %
Mobile	Prepaid subscribers as a percentage of mobile subscribers	83.2 %	81.5 %	82.1 %	82.7 %	82.2 %
	3G subscribers as a percentage of mobile subscribers	10.7 %	14.8 %	20.0 %	25.6 %	28.9 %
	Mobile broadband subscribers (mid and large screen)	1 272 000	2 053 000	2 743 000	3 589 000	4 170 000

No. 42021 213

Number of smartphone connections	2 049 000	3 345 000	5 969 000	9 138 000	11 184 000
Mobile ARPU (ZAR per month)	146.43	150.61	140.98	126.58	110.46
USD per month	17.66	20.67	19.61	15.52	13.54
Mobile MoU (minutes per month)	64	71	77	74	73

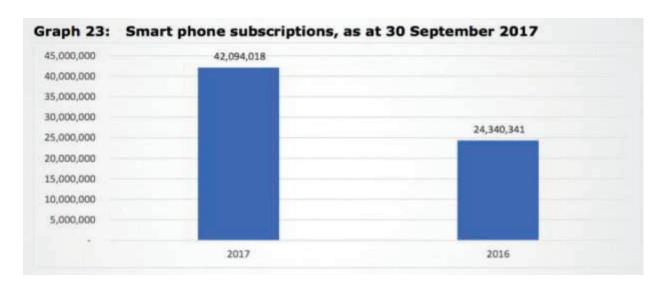
Table 10: Telecoms KPIs, South Africa, 2009-3Q 2013

(Source: Analysys Mason, Economist Intelligence Unit for nominal GDP per capita, 2014

ICASA has released its latest State of the ICT Sector in South Africa report, detailing the trends in the country's mobile data sector.

ICASA is responsible for the collection of statistics to monitor and report on the progress of ICT in the country, and monitors aspects such as smartphone adoption and mobile data usage.

"The questionnaires used to collect the relevant information were customised for the three sectors that ICASA regulates, namely telecommunications, broadcasting and postal," said ICASA.


Responses were received from 84 Electronic Communication Services and Electronic Communication Network Services licensees, which was "a significant increase of 82.61%" compared to the previous reporting period.

The report showed that mobile data usage and smartphone adoption are on the rise in South Africa, with a big jump in both categories from 2016 to 2017 – measured at 30 September 2017.

Smartphone subscriptions

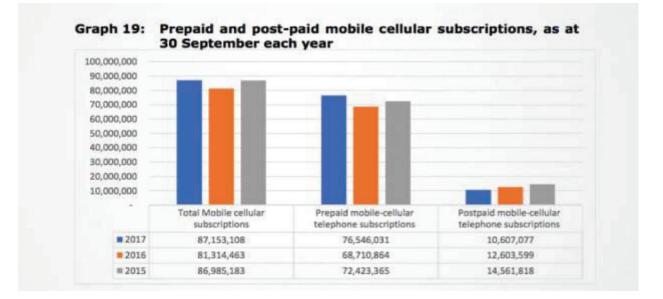
ICASA defined a smartphone as a mobile phone with advanced features, Wi-Fi connectivity, web browsing capabilities, a high-resolution touchscreen display, and the ability to use apps.

Its data shows that smartphone subscriptions increased by 72.9% from 2016 to 2017, as detailed in the graph below.

Mobile data traffic

Mobile data traffic also experienced a sharp increase, increasing by 67.3% from 2016 to 2017.

Over the past three years, mobile data traffic increased by 61.0% in South Africa, said ICASA.


Graph 28: Mobile data traffic in minutes for the 12-month period ending

Cellular subscriptions

Cellular subscriptions in the country were relatively flat overall, reaching just over 87 million as at 30 September 2017.

What is interesting to note is the steady decline in local post-paid mobile users over the past three years.

ICASA added that certain mobile networks count a user as someone who has not deactivated their SIM in a 90-day period – hence the subscriber number being higher than the country's population.

GOVERNMENT GAZETTE, 9 NOVEMBER 2018

7 IMT Roadmap

The objective of this section is to present the Authority's proposals with regard to radio spectrum plans for broadband services in specific bands.

First, we describe the importance of aligning with IMT in South Africa. Next, we identify the IMT bands targeted in this radio spectrum roadmap. Lastly, we lay out the proposed roadmap for each of the IMT bands considered.

The proposed roadmap for each band is structured to provide useful background information, the options under consideration and, in some cases, the Authority's proposal for the band. For the 450-470 MHz and 876-960 MHz bands, the Authority provides additional feasibility studies for the migrations in the band.

7.1 The IMT framework

IMT is the established framework for international alignment of specifications related to mobile technologies. This section presents the IMT specifications used as a basis for the spectrum roadmap and presents the bands considered currently in South Africa.

7.1.1 What is IMT?

In this section, we provide a formal definition of IMT and focus on the most relevant aspect for the roadmap: frequency bands.

According to the ITU, IMT systems are "mobile systems that provide access to a wide range of telecommunication services including advanced mobile services, supported by mobile and fixed networks, which are increasingly packet-based."

Further, the ITU states that the key features of "IMT-compliant" technologies include:

- a high degree of commonality of functionality worldwide while retaining the flexibility to support a wide range of services and applications in a cost-efficient manner;
- compatibility of services within IMT and with fixed networks;
- capability of interworking with other radio access systems;
- high-quality, mobile services;
- user equipment suitable for worldwide use;
- user-friendly applications, services and equipment;
- worldwide roaming capability; and
- enhanced peak data rates to support advanced services and applications.

For the purposes of this report, it is assumed that stakeholders are aware that IMT specifications provide guidance on:

 the specifications that compliant technologies must meet in terms of data rate and mobility; and

 the spectrum bands targeted by the IMT specifications for the deployment of IMTcompatible technologies

The latest IMT specifications are IMT-2000 and IMT-Advanced. IMT-2000 defined the capabilities for so-called 'Third Generation' (3G) mobile communications technology. IMT-Advanced promises the next generation mobile network with high data rates, seamless connectivity and mobile communication within heterogeneous networks.

7.1.2 The rationale for alignment with IMT in South Africa

The primary objective of IMT specifications is to provide a basis for harmonisation worldwide and reduce ecosystem fragmentation in several ways:

- In terms of the technological capability, IMT specifications provide a basis for standards development for systems, such as IEEE and 3GPP, to ensure that the technologies meet those requirements. In South Africa, the IMT specifications provide the Authority and the industry with benchmarks regarding the capabilities to be expected from upcoming technologies
- In terms of radio spectrum, IMT specifications provide a predictable basis on which to build a roadmap for the introduction of next-generation technologies. IMT specifications support the Authority in making radio spectrum available in a timely manner for the industry in South Africa.

South Africa stands to gain from adhering to a globally harmonised framework in the following areas:

- Economies of scale for standardised products (terminals and network equipment);
- Interoperability in the form of easy roaming and smooth, cross-border co-ordination;
- Predictability and stability for the mobile communications industry.

It is important to note that the adoption of IMT need not result unconditionally in the displacement of other existing uses of spectrum. In certain cases, radio spectrum sharing with other technologies is feasible. However, it is in South Africa's interest to adopt IMT specifications fully, wherever feasible, and to manage the IMT radio spectrum bands. In any case, the Authority performs feasibility studies in cases where the benefits of allocating spectrum exclusively to IMT services are not straightforward.

South Africa stands to gain from adhering to a globally harmonised framework for radio spectrum usage as is the case with the IMT framework. Spectrum harmonisation ensures:

- economies of scale for standardised products;
- smoother cross-border co-ordination; and
- easy roaming within the region where harmonisation is implemented.

In South Africa, it is important to align with IMT specifications in order to take advantage of worldwide standards, technologies and services.

In general, it is desirable to assign long-term IMT bands, so operators, network solution vendors and terminal manufactures have sufficient time to exploit synergies in harmonised

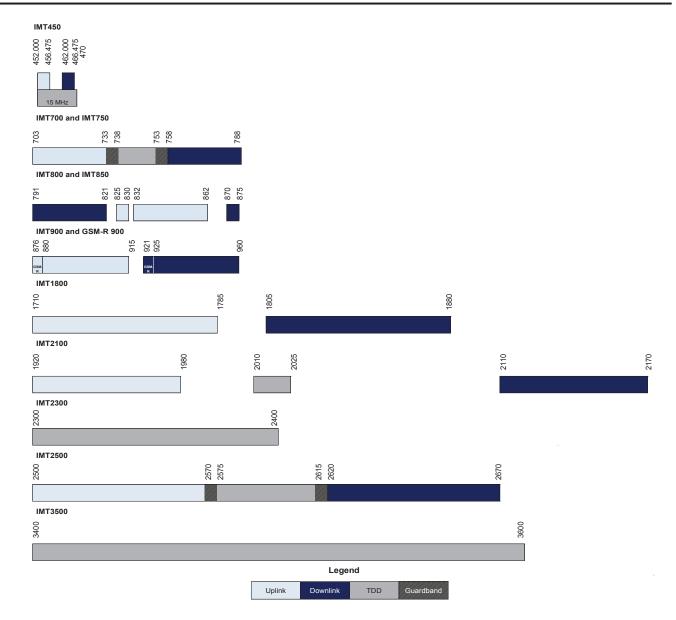
designs. Globally harmonised frequency arrangements in the bands identified for IMT will reduce the overall cost of IMT networks and terminals by providing economies of scale, and facilitating deployment and cross-border co-ordination, roaming, etc.

7.1.3 IMT bands previously identified

The following bands have been identified before by the ITU for use by IMT-compatible standards in the Radio Regulations (RR) "Edition of 2012".⁷

In the rest of this document, IMT designations of spectrum bands are used interchangeably with the actual frequency ranges. For instance, IMT450 refers to the frequency band extending from 450 MHz to 470 MHz.

IM	T bands	Paired configuration	Unpaired configuration		
IMT Designation	IMT Range	(FDD)	(TDD)		
IMT450	450-470 MHz	2×5 MHz	15 MHz		
IMT700	694-790 (or 806) MHz	2×45 MHz or 2×30 MHz + 2×3 MHz			
			22 MHz (option 3		
1147760	700 750 MUL		with 2×6 MHz guard bands)		
IMT750	733-758 MHz		25 MHz (option 2		
			with 2×5 MHz guard bands)		
IMT800	791-862 MHz	2×30 MHz (reverse uplink-downlink)			
IMT850	825-830// 870-875 MHz ⁸	2×5 MHz			
IMT900	880-960 MHz	2×35 MHz			
GSM900-R	876-880// 921-925 MHz	2×4 MHz GSM-R			
IMT1800	1710-1880 MHz	2×75 MHz			
IMT2100	1920-2170 MHz	2×60 MHz			
IMT2300	2300-2400 MHz		100 MHz		
	0500 0000 MU	070 M/H	50 MHz including 2×5 MHz		
IMT2600	2500-2690 MHz	2×70 MHz	guard bands		
IMT3500	3400-3600 MHz		200 MHz ⁹		
		2×355 MHz	370 MHz		


Table 11: IMT roadmap: (summary)

These bands will be discussed in more detail in the following sections. The figure below gives an overview of spectrum usage in South Africa in 2025:

⁷ http://www.itu.int/pub/R-REG-RR-2012.

⁸ Adjusted to allow coexistence with GSM-R (with no guard band to SRD's)

⁹ This may include maximum 20 MHz for a 'managed spectrum park'

No. 42021 219

Figure 10: IMT spectrum overview within South Africa in 2025

7.2 Guard bands

In order to define the possibilities of any co-existing scenario of IMT with existing technologies and applications, the minimum required guard bands and potential other intelligent interference suppression options have to be investigated properly.

The following summary is based on results of the European Conference of Postal and Telecommunications Administrations (CEPT) Report 41; "Compatibility between LTE and WiMAX operating within the bands 880-915 MHz / 925-960 MHz and 1710-1785 MHz / 1805-1880 MHz (900/1800 MHz bands) and systems operating in adjacent bands".

 Introducing LTE and WiMAX to the 900 and 1800 MHz bands should not cause any additional impact on adjacent services. In general, there is no need of an additional

guard band between LTE/WiMAX 900 and GSM-R whatever the channelisation or bandwidth considered for LTE/ WiMAX 900. ECC Report 096 concludes that a carrier separation of 2.8 MHz or more between the UMTS carrier and the nearest GSM-R carrier is sufficient. For LTE/ WiMAX 900, the frequency separation between the nearest GSM-R channel centre frequency and LTE/WiMAX channel edge should be at least 300 kHz.

- The LTE/WiMAX user equipment (UE) transmitting power is relatively limited. By considering that the minimum coupling loss (MCL) between the user equipment and E-GSM-R base station is relatively large compared with the MCL between LTE/WiMAX base station and GSM-R train-mounted mobile stations, and since the user equipment is moving, the interference from LTE/WiMAX user equipment to E-GSM-R mobile stations should not lead to harmful interference. The same holds for PMR/PAMR mobile stations.
- The worst interference case is that from E-GSM-R base station to LTE/WiMAX base station. The utilisation of interference mitigation techniques should be assessed in order to protect the LTE/WiMAX 900 base stations efficiently.
- The interference from Public Mobile Radio (PMR)/Public Access Mobile Radio (PAMR) (CDMA PAMR, Terrestrial Trunked Radio (TETRA)) base stations operating at frequencies above 915 MHz will cause receiver desensitisation of LTE/WiMAX 900 base stations operating below 915 MHz. In order to protect LTE/WiMAX900 base stations, the use of interference-mitigation techniques is necessary:
 - Reduced PMR/PAMR BS transmission power;
 - Spatial separation by co-ordination between operators;
 - External filters applied to the PMR/PAMR base stations; and
 - Sufficient guard band between the 900 MHz mobile allocation and the first PMR/PAMR channel in use. *ECC041 assumed >2 MHz separation between GSM-uplink and CDMA-downlink.*
- It is more likely that a combination of these interference-mitigation techniques should be used in order to ensure the compatibility of LTE/WiMAX 900 operating below 915 MHz and PMR/PAMR (CDMA PAMR, TETRA) operating above 915 MHz.
- LTE/WiMAX base stations to Digital Enhanced Cordless Communications (DECT) base stations / mobile stations: It can be concluded that the interference created by the LTE/WiMAX1800 system would be similar to the interference created by GSM1800. No guard band is therefore required between LTE/WiMAX 1800 and DECT allocations, provided that DECT is able to properly detect interference on the closest DECT carriers.
- The results in ITU-R M.2110 (Table 12) indicate that co-existence between CDMA450 base stations and the various fixed and mobile service base stations may be a challenge even with the use of significant filtering to provide the required attenuation. While the separation distance between the two systems is significantly reduced, if a filter at the CDMA450 base station receiver can provide at least 60-70 dB rejection of

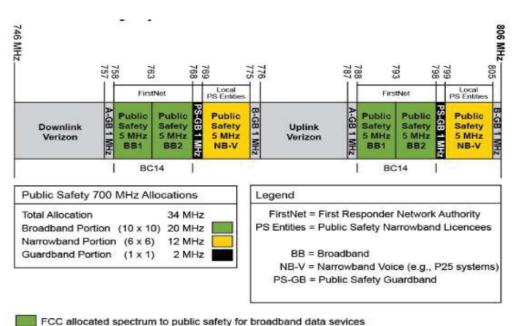
No. 42021 221

the unwanted emissions, the value of the separation distance may be significant to permit co-existence in a few cases. Other possible mitigation measures are available that could be used to decrease the possibility of harmful interference even further, such as the use of guard bands and/or disabling of one or more CDMA450 carriers.

	CDMA450 base station			
Fixed and mobile systems	Separation distance	Separation distance/ filtering		
FM	21.45 km	1 km / 60 dB		
TETRA	25.6 km	1 km / 60 dB		
NMT	49.14 km	1 km / 70 dB		
Trunked land mobile systems – analogue FM	43.14 km	1 km / 70 dB		
Trunked land mobile systems – digital/C4FM	38.6 km	1 km / 70 dB		
Trunked land mobile systems – digital/ BPSK / QPSK/ 8-PSK/ 16-QAM	112 km	3 km / 70 dB		

The same holds for BS to MS interference suppression of 60-80 dB or guard band.

Table 12: ITU-R M2110: CDMA separation distances (BS-BS case) in 450-470MHz


The results of broadcasting systems with CDMA450 (Table 13) indicate that broadcasting base stations and CDMA450 base / mobile stations can successfully operate in adjacent spectrum, if the unwanted and spurious emissions from the broadcasting base stations can be reduced. Reducing the unwanted emissions by 60 dB will enable successful sharing between the broadcasting base stations and the CDMA450 base/mobile stations.

Broadcasting	CDMA450 b	base station	CDMA450 mobile station			
system typical transmit power	Distance	Distance/filtering	Distance	Distance/filtering		
2 kW ERP	43.7 km	< 1 km/ 60 dB	20.3 km	< 1 km/ 40 dB		
15 kW ERP	59.8 km	1.2 km/ 60 dB	31 km	< 1 km/ 60 dB		
1 MW ERP	92 km	3.9 km/ 60 dB	49.9 km	<1 km/ 60 dB		

Table 13: Results of study of interference of broadcasting systems with CDMA 450

As seen in Figure 11, in the US-700 MHz band, the guard bands between the narrowband voice system and the broadband LTE system are chosen at 1 MHz each. There was no detailed interference evaluation found so far, therefore, it may be a regulatory definition with special safety margin, which might be reduced with time/experience. Due to improved propagation effects in 450 MHz relative to 700 MHz, any guard band in 700 MHz would have to be larger in 450 MHz. So, 1 MHz guard band is also used in 450 MHz until actual studies may prove lower margins.

GOVERNMENT GAZETTE, 9 NOVEMBER 2018

Commercial Mobile Carriers

Based on the results above, general guard band values can be applied to other bands, which should be considered in the IMT roadmap channelling exercise:

- Guard band between GSM and LTE or UMTS: >300 kHz; and
- Guard band between TETRA, CDMA or other narrowband systems to LTE or UMTS: >1 MHz.

Conclusions

- The Authority's decision is for Neotel's assignment to be adjusted to 825-830 MHz paired with 870-875 MHz.
 - The Authority will take the necessary measures to ensure coexistence between CDMA850 and GSM-R, i.e. amend assignments as appropriate and ensure coordination.
- The long term solution is for Neotel to cease using this band for CDMA.
 - Consideration 2 and Consideration 3 indicate a long term solution when CDMA850 has ceased and an (LTE) IMT850 band is deployed. With migration from deployed GSM-R to LTE-R, consideration needs to be made of an intermediate step of 2×3 MHz LTE first to ensure dual illumination and 2×5 MHz LTE in the final step. Further coexistence with GSM-R with about 4 MHz guard band still has to be investigated, but is not expected herein.

No. 42021 223

LTE R Considerations

In the long term, one future usage of the IMT850-band could be LTE-R with 2×5 MHz along the current GSM-R coverage and beyond. Equipment installed for GSM-R could be prolonged by transferring it to LTE-R (notably when unified SingleRAN equipment has been deployed). Potential coexistence scenarios with GSM-R could be developed and investigated, e.g. 2×1 MHz GSM-R might remain for operational critical voice based services, while the broadband services to the trains would be handled via LTE850.

IMT850 for LTE-R would be more favourable than the GSM-R band because of the existing ecosystem for IMT850, while LTE within current GSM-R bands would face the problem that there is less than 2×5 MHz bandwidth and a probable lack of terminals. IMT850 could be implemented in most commercially available terminals which would be an advantage for IMT850 relative to IMT450 until the availability of IMT450-terminals builds up.

IMT450 could also be used for LTE-broadband services along the lines to serve customer demands via Wi-Fi-connectivity within the trains. The existing antennas might be reused as IMT450-terminal-antennas.

This option could be of relevance to the railway operators.

GOVERNMENT GAZETTE, 9 NOVEMBER 2018

7.3 1700-2290 MHz band

The key proposals in this band include an extension of the IMT-2100 band, the migration of fixed links into the band and the introduction of fixed broadband where feasible.

First, the various positions of the regulatory or standards bodies such as the ITU, CRASA and the Authority are presented. Next, the action items of the FMP initiated by the Authority are restated. Finally, the Authority presents its proposals for various sub-bands in the 1700-2290 MHz band.

7.3.1 ITU Position on 1700-2290 MHz

According to ITU Recommendation ITU-R M.1036-4 (03/2012), the recommended frequency arrangements for implementation of IMT in the band 1710-2200 MHz are summarised in Table 14.

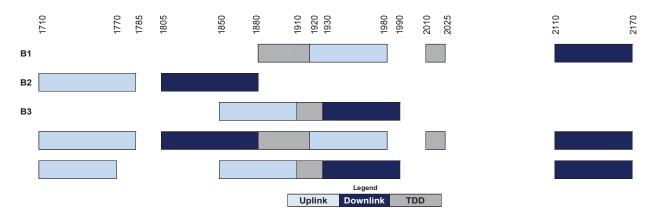


Figure 12: Frequency arrangements in the 1710-2200 MHz band

Frequency		Unpaired			
Frequency arrange ments	Mobile station transmitter (MHz)	Centre gap (MHz)	Base station transmitter (MHz)	Duplex separation (MHz)	arrangements (e.g. for TDD) (MHz)
B1	1 920-1 980	130	2 110-2 170	190	1 880-1 920; 2 010-2 025
B2	1 710-1 785	20	1 805-1 880	95	None
B3	1 850-1 910	20	1 930-1 990	80	1 910-1 930
B4 harmonised with B1 and B2)	1 710-1 785 1 920-1 980	20 130	1 805-1 880 2 110-2 170	95 190	1 880-1 920; 2 010-2 025
B5 (harmonised with B3 and parts of B1 and B2)	1 850-1 910 1 710-1 770	20 340	1 930-1 990 2 110-2 170	80 400	1 910-1 930

 Table 14: Frequency arrangements in the band 1710-2200 MHz

No. 42021 225

NOTE 1 – In the band 1710-2025 MHz and 2110-2200 MHz, three frequency arrangements (B1, B2 and B3) are already deployed by public mobile cellular systems including IMT. Based on these three arrangements, different combinations of arrangements are recommended as described in B4 and B5. The B1 arrangement and the B2 arrangement are fully complementary, whereas the B3 arrangement partly overlaps with the B1 and B2 arrangements.

For administrations having implemented the B1 arrangement, the B4 option enables optimisation of the use of spectrum for paired IMT operation.

For administrations having implemented the B3 arrangement, the B1 option can be combined with the B2 arrangement. B5 is therefore recommended to optimise the use of the spectrum: B5 enables the use of spectrum to be maximised for IMT in administrations where B3 is implemented and where the band 1770-1850 MHz is not available in the initial phase of deployment of IMT in this frequency band.

NOTE 2 – TDD may be introduced in unpaired bands and also under certain conditions in the uplink bands of paired frequency arrangements and/or in the centre gap between paired bands.

NOTE 3 – If selectable/variable duplex technology is implemented within terminals as the most efficient way to manage different frequency arrangements, the fact that neighbouring administrations could select B5 will have no impact on the complexity of the terminal. Further studies are necessary.

7.3.2 SADC Position on 1700-2290 MHz

The SADC Frequency Allocation Plan (Table 15)proposes that the 1700-2290 MHz be allocated to Fixed Links (single frequency), IMT, IMT (Terrestrial), IMT (Satellite), FWA and BFWA.

The 1700-2290 MHz band is currently used for a fixed, mobile, mobile-satellite, meteorological-satellite and space operation systems in various SADC countries.

The SADC FAP recognises that frequency channelisation of several key frequency bands must be developed and preferably harmonised throughout the SADC region. The frequency bands used for IMT, Broadband Fixed Wireless Access (BFWA), PtP microwave systems, etc. will be considered. Channelling plans will be added to the SADC band plan in future.

ITU Region 1 allocations and footnotes	SADC common allocation/s and relevant ITU footnotes	SADC proposed common sub- allocations / utilisation	Additional information
1 700-1 710 MHz	1 700-1 710 MHz	Fixed links (single	
FIXED	FIXED	frequency)	
METEOROLOGICAL– SATELLITE	METEOROLOGICAL– SATELLITE		
(space-to-Earth)	(space-to-Earth)		
MOBILE except	MOBILE except		

GOVERNMENT GAZETTE, 9 NOVEMBER 2018

aeronautical mobile	aeronautical mobile		
5.289 5.341	5.289 5.341		
1 710-1 930 MHz	1710 – 1930 MHz	1 710-1 785 MHz IMT	IMT
FIXED MOBILE 5.384A 5.388A 5.388B 5.149	FIXED MOBILE 5.384A 5.388A 5.388B 5.149	1785-1805 MHz BFWA	
5.341 5.385 5.386 5.387 5.388	5.341 5.385 5.388	1 805-1 880 MHz IMT	Paired with 1710-1785 MHz.
		1 880-1 900 MHz FWA Cordless telephone	
		1 900-1 920 MHz FWA IMT (terrestrial)	
1930 – 1979 MHz	1930 – 1979 MHz	1920-1980 MHz IMT	Paired with 2170 –
FIXED	FIXED	(terrestrial)	2200MHz The
MOBILE 5.388A 5.388B 5.388	MOBILE 5.388A 5.388B 5.388		development of satellites for IMT services to be
1970 – 1980 MHz	1970 – 1980 MHz		monitored
FIXED	FIXED		
MOBILE 5.388A 5.388B 5.388	MOBILE 5.388A 5.388B 5.388		
2 010-2 025 MHz	2 010-2 025 MHz	IMT terrestrial (2010 -	TDD
FIXED	FIXED	2025 MHz)	
MOBILE 5.388A 5.388B 5.388	MOBILE 5.388A 5.388B 5.388		
2110 – 2120 MHz	2110 – 2120 MHz	IMT (terrestrial) (2110-	Paired with 1920-1980
FIXED	MOBILE 5.388A5.388B	2170 MHz)	MHz
MOBILE 5.388A5.388B SPACE RESEARCH (deep space) (Earth-to- space) 5.388	SPACE RESEARCH (deep space) (Earth-to- space) 5.388		
2120 – 2160 MHz	2120 – 2160 MHz		
FIXED	MOBILE 5.388A 5.388B		
MOBILE 5.388A 5.388B 5.388	5.388		
2160 – 2170 MHz	2160 – 2170 MHz		
FIXED	MOBILE 5.388A 5.388B		
MOBILE 5.388A 5.388B 5.388	5.388		
2 170-2 200 MHz	2 170-2 200 MHz	IMT (satellite) (2170-	
FIXED	MOBILE	2200 MHz)	Paired with 1980-2010
MOBILE	MOBILE-SATELLITE		MHz The development of satellites for IMT services
MOBILE-SATELLITE	(space-to-Earth) 5.351A		to be monitored.
(space-to-Earth) 5.351A	5.388 5.389A 5.389F		

No. 42021 227

5.388 5.389A 5.389F			
2 200-2 290 MHz	2 200-2 290 MHz	Fixed links (2025-2110	Radio Frequency
SPACE OPERATION (space-to-Earth) (space- to-space)	SPACE OPERATION (space-to-Earth) (space- to-space)	MHz paired with 2200- 2285 MHz)	channel arrangement according to ITU-RF.
EARTH EXPLORATION - SATELLITE (space-to-	EARTH EXPLORATION – SATELLITE (space-to-	PEN/A (2 295 2 200	1098.
Earth) (space-to-space) FIXED	Earth) (space-to-space) FIXED	BFWA (2 285-2 300 MHz)	
MOBILE 5.391	SPACE RESEARCH (space-to-Earth) (space-		
SPACE RESEARCH (space-to-Earth) (space- to-space)	to-space)		
5.392	5.392		

Table 15: SADC Frequency Allocation Plan 1700-2290 MHz

Footnotes:

5.384 Additional allocation: in India, Indonesia and Japan, the band 1700-1710 MHz is also allocated to the space research service (space to Earth) on a primary basis. (WRC-97).

5.384A The bands, or portions of the bands, 1710-1885 MHz, 2300-2400 MHz and 2500-2690 MHz, are identified for use by administrations wishing to implement International Mobile Telecommunications (IMT) in accordance with Resolution 223 (Rev.WRC-07). This identification does not preclude the use of these bands by any application of the services to which they are allocated and does not establish priority in the Radio Regulations. (WRC-07)

5.385 Additional allocation: the band 1718.8-1722.2 MHz is also allocated to the radio astronomy service on a secondary basis for spectral line observations. (WRC-2000)

5.386 Additional allocation: the band 1750-1850 MHz is also allocated to the space operation (Earth-to-space) and space research (Earth-to-space) services in Region 2, in Australia, Guam, India, Indonesia and Japan on a primary basis, subject to agreement obtained under No.9.21, having particular regard to troposcatter systems. (WRC-03)

5.387 Additional allocation: in Belarus, Georgia, Kazakhstan, Kyrgyzstan, Romania, Tajikistan and Turkmenistan, the band 1770-1790 MHz is also allocated to the meteorological-satellite service on a primary basis, subject to agreement obtained under No.9.21. (WRC-12)

5.388A In Regions 1 and 3, the bands 1885-1980 MHz, 2010-2025 MHz and 2110-2170 MHz and in Region 2, the bands 1885-1980 MHz and 2110-2160 MHz may be used by high altitude platform stations as base stations to provide International Mobile Telecommunications (IMT), in accordance with Resolution 221 (Rev.WRC-07). Their use by IMT applications using high altitude platform stations as base stations does not

preclude the use of these bands by any station in the services to which they are allocated and does not establish priority in the Radio Regulations.(WRC-12)

5.388B In Algeria, Saudi Arabia, Bahrain, Benin, Burkina Faso, Cameroon, Comoros, Côte d'Ivoire, China, Cuba, Djibouti, Egypt, United Arab Emirates, Eritrea, Ethiopia, Gabon, Ghana, India, Iran (Islamic Republic of), Israel, Jordan, Kenya, Kuwait, Libya, Mali, Morocco, Mauritania, Nigeria, Oman, Uganda, Pakistan, Qatar, the Syrian Arab Republic, Senegal, Singapore, Sudan, South Sudan, Tanzania, Chad, Togo, Tunisia, Yemen, Zambia and Zimbabwe, for the purpose of protecting fixed and mobile services, including IMT mobile stations, in their territories from co-channel interference, a high altitude platform station (HAPS) operating as an IMT base station in neighbouring countries, in the bands referred to in No. 5.388A, shall not exceed a co-channel power flux-density of $-127 \, dB(W/(m^2 \cdot MHz))$ at the Earth's surface outside a country's borders unless explicit agreement of the affected administration is provided at the time of the notification of HAPS.(WRC-12)

5.389A The use of the bands 1980-2010 MHz and 2170-2200 MHz by the mobilesatellite service is subject to coordination under No. 9.11A and to the provisions of Resolution 716 (Rev.WRC-2000)¹⁰.(WRC-07)

5.389B The use of the band 1980-1990 MHz by the mobile-satellite service shall not cause harmful interference to or constrain the development of the fixed and mobile services in Argentina, Brazil, Canada, Chile, Ecuador, the United States, Honduras, Jamaica, Mexico, Peru, Suriname, Trinidad and Tobago, Uruguay and Venezuela.

5.389C The use of the bands 2010-2025 MHz and 2160-2170 MHz in Region 2 by the mobile-satellite service is subject to co-ordination under No.9.11A and to the provisions of Resolution 716 (Rev.WRC-2000)¹¹.(WRC-07)

5.389E The use of the bands 2010-2025 MHz and 2160-2170 MHz by the mobilesatellite service in Region 2 shall not cause harmful interference to or constrain the development of the fixed and mobile services in Regions 1 and 3.

5.389F In Algeria, Benin, Cape Verde, Egypt, Iran (Islamic Republic of), Mali, Syrian Arab Republic and Tunisia, the use of the bands 1 980-2 010 MHz and 2 170-2 200 MHz by the mobile-satellite service shall neither cause harmful interference to the fixed and mobile services, nor hamper the development of those services prior to 1 January 2005, nor shall the former service request protection from the latter services. (WRC-2000)

5.391 In making assignments to the mobile service in the bands 2025-2110 MHz and 2200-2290 MHz, administrations shall not introduce high-density mobile systems, as described in Recommendation ITU-R SA.1154, and shall take that

¹⁰ Note by the Secretariat: This Resolution was revised by WRC-12.

No. 42021 229

Recommendation into account for the introduction of any other type of mobile system. (WRC-97)

5.392 Administrations are urged to take all practicable measures to ensure that space-to-space transmissions between two or more non-geostationary satellites, in the space research, space operations and Earth exploration-satellite services in the bands 2025-2110 MHz and 2200-2290 MHz, shall not impose any constraints on Earth-to-space, space-to-Earth and other space-to-space transmissions of those services and in those bands between geostationary and non-geostationary satellites.

7.3.3 Radio Frequency Migration Plan for 1700-2290 MHz

With the 1700-2290 MHz band, the objectives of the Radio Frequency Migration Plan are to:

- Retain existing allocations for fixed links and migrate in fixed links from other bands; and
- If co-existence between broadband wireless access and point-to-point services is not possible, then BFWA could be implemented in areas where PtP links are absent.

The table below is the summary of the Authority's Frequency Migration Plan as it relates to the 2025 - 2110 paired with 2200 - 2285 MHz.

Frequency Band (MHz)	Allocation in NRFP 2013 (Applications)	Proposed Utilisation/ Applications	Notes on migration/ usage
2025 – 2110 paired	FIXED	Fixed Links (DF)	Develop RFSAP with consideration to
with 2200 – 2285	(Fixed links)	BFWA (New ICASA proposal)	Utilisation of fixed links.
			Migration of fixed links (DF) from other bands
			Potential to allocate for BFWA – but only where there is no interference problem with PTP links

 Table 16: SA Frequency Migration Plan 2015-2285 MHz

CRASA's preferred channel arrangement for the 2 GHz band (2025-2110 MHz paired with 2200-2285 MHz) is the same as the one in Annexure 1 to ITU-R Recommendation F.1098. The 2 GHz band has technical and economic advantages for low capacity digital systems including, for example, provisioning of fixed links operating over long distances. The RF channel arrangement in Annexure 1 of Recommendation ITU-R F.1098 provides for 6 return channels of 14 MHz each. These channels can be further sub-divided into channels of 7 MHz, 3.5 MHz or 1.75 MHz, depending on the system capacity requirements. The centre frequencies for RF channels in the 2 GHz band based on channels of 14 MHz are indicated in the table below.

The proposed RF channel centre frequencies for the 2 GHz band (using 14 MHz channels) are:

GOVERNMENT GAZETTE, 9 NOVEMBER 2018

Channel no.	Centre frequency	Channel no.	Centre frequency
1	2032.5 MHz	1'	2207.5 MHz
2	2046.5 MHz	2'	2221.5 MHz
3	2060.5 MHz	3'	2235.5 MHz
4	2074.5 MHz	4'	2249.5 MHz
5	2088.5 MHz	5'	2263.5 MHz
6	2102.5 MHz	6'	2277.5 MHz

Table 17: CRASA channelling plan for 2025-2290 MHz

7.3.4 Current usage of the 1700-2290 MHz band in South Africa

The table below summarizes the current assignments in the 1700-2290 MHz band.

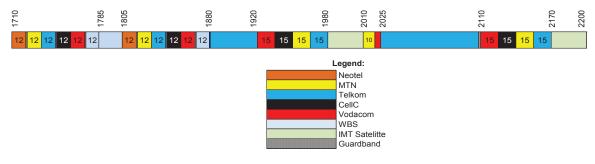


Figure 13: Current assignments with 1700-2200 MHz

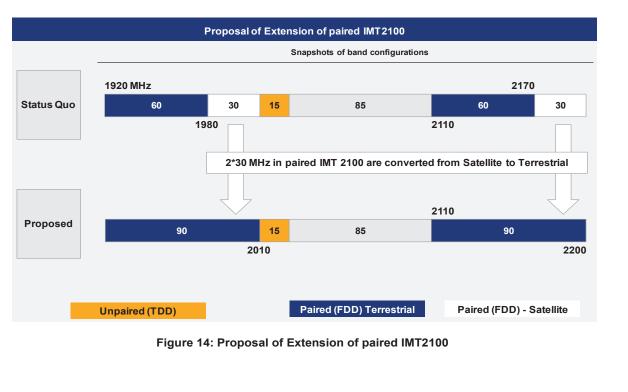
7.3.4.1 Usage of paired IMT spectrum in the 1700-2290 MHz band

In South Africa, the IMT1800 FDD spectrum is used for GSM1800 for 2×75 MHz from 1710-1880 MHz for 6 operators with each having 2×12 MHz. There are also 4 operators who already have UMTS 2100 FDD spectrum of 2×15 MHz each.

7.3.4.2 Usage of unpaired IMT spectrum in the 1700-2290 MHz band

The TDD bands 2010-2025 are currently assigned to MTN (10 MHz) and Vodacom (5 MHz). The neighbouring band 2025-2100 MHz is sparsely used by PtP-links.

The TDD band from 1880-1920 MHz is in use by Telkom, SAPS and SANDF, e.g. for DECT-systems and fixed links. The guard band of 5 MHz from 1915-1920 MHz is free.


7.3.5 Proposal for extension of IMT2100

IMT2100 may be delayed due to reduced availability of terminals. Depending on the traffic requirements for GSM per operator and the increased IMT data demands due to higher IMT-terminal penetration, the opportunity to migrate to broadband IMT (i.e. LTE) may be possible in one or two steps, for example, 2×5 MHz. At later stages, Universal Mobile Telecommunications System (UMTS) will also be migrated to broadband IMT.

The IMT2100 band currently consists of 2×60 MHz of spectrum in 1920-1980 MHz paired with 2110-2170 MHz. The Authority proposes to extend this band by 2x30 MHz at the top end of the current IMT2100 band. This band is currently foreseen as IMT-satellite. The consolidated IMT2100 band would therefore be 1920-2010 MHz paired with 2110-2200 MHz (see figure below).

This extension of the IMT2100 band would push the paired portion of IMT2100 right against the unpaired portion of the band that extends from 2010 MHz to 2025 MHz. A guard band of 5 MHz is typically required between adjacent paired and unpaired IMT bands. Therefore, the first 5 MHz of the 10 MHz assigned to MTN from 2010 MHz to 2015 MHz could be used as a guard band. The band 2015-2025 MHz could remain usable for IMT TDD, but might be reassigned to 10 MHz for one user. MTN and Vodacom might be willing to change unused TDD spectrum for new FDD spectrum. These new TDD bands from 1885-1915 MHz plus guard bands and 2015-2025 MHz might be assigned to a TDD wholesale operator/consortium.

GOVERNMENT GAZETTE, 9 NOVEMBER 2018

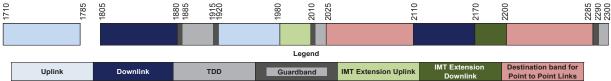


Figure 15: IMT2100-extensions proposal

The 2025-2110 and 2200-2285 bands are not usable for (high-density) IMT-services, so the Authority proposes to use this band for PtP link destination band migrated from lower bands.

2285 – 2290 MHz could be used for a 5 MHz guard band.

The 2290-2300 MHz band is currently unused in South Africa. According to the Frequency Migration Plan an RFSAP should be developed to consider BFWA or BWA. An evaluation may be carried out as to whether IMT-TDD equipment could be developed or tuned to extend IMT-2300 starting from 2290-2400 MHz. In general, the potential interference mitigation measures, between point to point and IMT-TDD at 2025 MHz and at 2285 MHz as well as to IMT FDD at 2110 MHz, have to be considered.

The suggestions concerning 1980-2110 // 2170-2200 MHz are tentative as these bands are not yet identified for terrestrial IMT at international level (and therefore there is no ecosystem). However, these bands might be identified for IMT in the future because of the attractive location near GSM/IMT1800 and UMTS/IMT2100. Digital equipment is

already available (SRAN-concept¹²) and radio equipment, filters and antennas need adaptations.

7.3.6 Conclusions

The response to the consultation on 2290-2300 MHz indicated that while it could be useful to consider the band for IMT, such consideration is not supported at this stage and should wait for a decision at an international level.

¹² SRAN; single radio access network with separation of RF and digital baseband (BB) offers the use of standardised digital equipment independent from frequency bands. RF-units have to be adapted to specific bands with filters, etc.

7.4 IMT2020 Frequencies for Consideration

The following frequency information are extracted from the National Radio Frequency Plan (NRFP) 2018

7.4.1 1.427-1.518 GHz

ITU Region 1 allocations and footnotes	South African allocations and footnotes	Typical Applications	Notes and Comments
1 427-1 429 MHz SPACE OPERATION (Earth-to-space) FIXED MOBILE except aeronautical mobile 5,341A 5.338A 5.341	1 427-1 429 MHz SPACE OPERATION (Earth-to-space) FIXED NF14 MOBILE except aeronautical mobile 5,341A 5.338A 5.341	l 427-1 452 MHz Fixed links (duplex)	Paired with 1 375 – 1 400 MHz In accordance with Recommendation ITU-R F.1242 ITU Res. 223 (Rev.WRC- 15)
1 429-1 452 MHz FIXED MOBILE except aeronautical mobile 5.341A 5.338A 5.341 5.342	1 429-1 452 MHz FIXED MOBILE except aeronautical mobile 5.341A	1 427-1 452 MHz Fixed links (duplex)	Paired with 1 375 – 1 400 MHz) In accordance with Recommendation ITU-R F.1242
1 452-1 492 MHz FIXED MOBILE except aeronautical mobile 5.346 BROADCASTING BROADCASTING- SATELLITE 5.208B	1 452-1 492 MHz FIXED NF14 MOBILE except aeronautical mobile 5.346 BROADCASTING BROADCASTING- SATELLITE 5.208B)	studies called for Resolution 761 (WRC-15) on the "Compatibility of International Mobile Telecommunications and broadcasting-satellite service and take appropriate regulatory and technical studies, with a view to ensuring the compatibility of IMT and BSS (sound) are undertaken within the ITU-R

Page 83/183

No. 42021 235

5.341 5.342 5.345	5.341 5.345 NF12		ITU-R Res. 223 (Rev.WRC-15)
			ITU-R Res. 223 (Rev.WRC-15)
1 492-1 518 MHz	1 492-1 518 MHz		
FIXED	FIXED	Fixed Links (1 492 – 1 517 MHz)	Paired with 1 350 – 1 375 MHz In accordance with
MOBILE except aeronautical mobile 5.341A	MOBILE except aeronautical mobile 5.341A		Recommendation ITU-R F.1242
5.541A	3.341A	Single Frequency Links (1 517 – 1 525 MHz)	ITU-R Res. 223 (Rev.WRC-15)
			(SharingandCompatibilityStudiescalled for by Resolution223 (Rev. WRC-15) areunderway within the ITU-R)
5.341 5.342	5.341		Nj

7.4.2 3.3 – 3.6 GHz

ITU Region 1 allocations and footnotes	South African allocations and footnotes	Typical Applications	Notes and Comments
3 300-3 400 MHz RADIOLOCATION	3 300-3 400 MHz RADIOLOCATION	Government Services IMT Res. 223 (Rev.WRC-15)	• Subject to outcome of the sharing and compatibility studies called for by Resolution 223 (WRC-15) currently underway within the ITU-R, there might be a need to migrate Radars out of this band. This will be addressed through an update of the migration plan.
5.149 5.429 5.429A 5.429B 5.430	5.149 5.429A 5.429B		

GOVERNMENT GAZETTE, 9 NOVEMBER 2018

3 400-3 600 MHz	3 400-3 600 MHz		
FIXED FIXED-SATELLITE (space-to-Earth) MOBILE 5.430A Radiolocation 5.431	FIXED MOBILE 5.430A NF9	IMT3500 TDD (3400 - 3600 MHz)	InternationalMobileTelecommunicationRoadmap (GG No.38213)14 November 2014. RadioFrequencyAssignmentPlan (GG N. 38640) asamended 30 March 2015.Recommendation ITU-RM.1036The band 3400 -3600MHz is also used forBFWA in some SADCcountries

7.4.3 24.25-27.5 GHz

ITU Region 1 allocations and footnotes	South African allocations and footnotes	Typical Applications	Notes and Comments
24.25-24.45 GHz	24.25-24.45 GHz		
FIXED	FIXED		Temporary fixed links for ENG/OB
24.45-24.65 GHz	24.45-24.65 GHz		
FIXED INTER-SATELLITE	FIXED NF14	Fixed Links (26 GHz) (24.5 – 26.5 GHz) Fixed links - 26 GHz (24.5-26.5 GHz) BFWA (24.5- 26.5 GHz)	Channelling plan for 26 GHz band in accordance with ITU-R Rec. F.748 Annex 1.
24.65-24.75 GHz	24.65-24.75 GHz		
FIXED	FIXED NF14	Fixed Links (26 GHz) (24.5 – 26.5 GHz)	Channelling plan for 26 GHz band in accordance with ITU-R Rec. F.748 Annex 1.

No. 42021 237

FIXED-SATELLITE (Earth-to-space) 5.532B INTER-SATELLITE		Fixed links - 26 GHz (24.5-26.5 GHz) BFWA (24.5-	
		26.5 GHz)	
24.75-25.25 GHz	24.75-25.25 GHz		
FIXED	FIXED NF14	Fixed Links (26 GHz) (24.5 – 26.5 GHz)	Channelling plan for 26 GHz band in accordance with ITU-R Rec. F.748 Annex 1.
FIXED-SATELLITE (Earth-to-space) 5.532B	FIXED- SATELLITE (Earth-to- space) 5.532B	Fixed links - 26 GHz (24.5-26.5 GHz) BFWA (24.5- 26.5 GHz)	
25.25-25.5 GHz	25.25-25.5 GHz		
FIXED	FIXED NF14	Fixed Links (26 GHz) (24.5 – 26.5 GHz)	Channelling plan for 26 GHz band in accordance with ITU-R Rec. F.748 Annex 1.
INTER-SATELLITE 5.536 MOBILE		BFWA (24.5- 26.5 GHz	
Standard frequency and time signal-satellite (Earth-to-space)			
25.5-27 GHz	25.5-27 GHz		
EARTH EXPLORATION- SATELLITE (space-to Earth) 5.536B	EARTH EXPLORATION- SATELLITE (space-to Earth) 5.536B	National Polar- Orbiting Operational Environment Satellite System (NPOESS)	Channelling plan for 26 GHz band in accordance with ITU-R Rec. F.748 Annex 1.
FIXED	FIXED NF14	Fixed Links (26 GHz) (24.5 – 26.5	
INTER-SATELLITE 5.536 MOBILE		GHz) BFWA (24.5- 26.5 GHz	
SPACE RESEARCH (space-to-Earth) 5.536C			
Standard frequency and time signal-satellite (Earth-to-space)			

GOVERNMENT GAZETTE, 9 NOVEMBER 2018

5.536A		
27.27.5 CH	5.536A	
27-27.5 GHz	27-27.5 GHz	
FIXED INTER-SATELLITE 5.536 MOBILE	FIXED	

No. 42021 239

7.4.4 37-40.5 GHz

ITU Region 1 allocations and footnotes	South African allocations and footnotes	Typical Applications	Notes and Comments
37-37.5 GHz	37-37.5 GHz		
FIXED	FIXED NF14	Fixed Links (38 GHz) (37.0 – 39.5 GHz)	
MOBILE except aeronautical mobile			
SPACE RESEARCH (space-to-Earth)	SPACE RESEARCH (space-to- Earth)		
5.547	5.547		
37.5-38 GHz	37.5-38 GHz		
FIXED	FIXED NF14	Fixed Links (38 GHz) (37.0 – 39.5 GHz)	The band 37-40 GHz is identified for HDFS; Res.75 applies.
FIXED-SATELLITE (space-to-Earth)			Channelling plan for 38 GHz band in accordance with ITU Rec. F.749 Annex 1.
MOBILE except aeronautical mobile			
SPACE RESEARCH (space-to-Earth)	SPACE RESEARCH (space-to- Earth)		
Earth exploration- satellite (space-to- Earth)	Earth exploration- satellite (space-to- Earth)		
5.547			
	5.547		
38-39.5 GHz	38-39.5 GHz		

GOVERNMENT GAZETTE, 9 NOVEMBER 2018

FIXED	FIXED NF14	Fixed Links (38 GHz) (37.0 – 39.5 GHz)	Channelling plan for 38 GHz band in accordance with ITU Rec. F.749 Annex 1.
FIXED-SATELLITE (space-to-Earth)			The band 37-40 GHz is identified for HDFS; Res.75 applies.
MOBILE Earth exploration- satellite (space-to- Earth)	Earth exploration- satellite (space-to- Earth)		
5.547	5.547		
39.5-40 GHz	39.5-40 GHz		
FIXED	FIXED		
FIXED-SATELLITE (space-to-Earth) 5.516B	FIXED- SATELLITE (space- to-Earth) 5.516B		The band 37-40 GHz is identified for HDFS; Res.75 applies.
MOBILE			The band 39.5-40 GHz is identified for HDFSS; Res.143 applies.
MOBILE- SATELLITE (space-to- Earth)			
Earth exploration- satellite (space-to- Earth)	Earth exploration- satellite (space-to- Earth)		
5.547	5.547		
40-40.5 GHz	40-40.5 GHz		
EARTH EXPLORATION- SATELLITE (Earth-to- space) FIXED	EARTH EXPLORATION- SATELLITE (Earth-to- space) FIXED	Government Services	The band 40-40.5 GHz is identified for HDFSS; Res.143 applies.
FIXED-SATELLITE (space-to-Earth) 5.516B	FIXED- SATELLITE (space- to-Earth) 5.516B		
MOBILE MOBILE- SATELLITE (space-to- Earth)	MOBILE MOBILE- SATELLITE (space- to-Earth)		

No. 42021 241

|--|

GOVERNMENT GAZETTE, 9 NOVEMBER 2018

7.4.5 42.5-43.5 GHz

ITU Region 1 allocations and footnotes	South African allocations and footnotes	Typical Applications	Notes and Comments
42.5-43.5 GHz FIXED	42.5-43.5 GHz FIXED NF14		BFWA or MWS (40.5- 43.5 GHz).
FIXED-SATELLITE (Earth-to-space) 5.552	FIXED- SATELLITE (Earth-to- space) 5.552		The band 40.5-43.5 GHz is identified for HDFS; Res.75 applies.
MOBILE except aeronautical mobile RADIO	MOBILE except aeronautical mobile RADIO	Government Services (43.5- 45.5 GHz)	
ASTRONOMY 5.149 5.547 5.551H	ASTRONOMY 5.149 5.547 5.551H		

7.4.6 45.5-47 GHz

ITU Region 1 allocations and footnotes	South African allocations and footnotes	Typical Applications	Notes and Comments
43.5-47 GHz	43.5-47 GHz		
MOBILE 5.553 MOBILE- SATELLITE	MOBILE 5.553 MOBILE- SATELLITE		
RADIONAVIGATIO N	RADIONAVIGATIO N		
RADIONAVIGATIO N-SATELLITE	RADIONAVIGATIO N-SATELLITE		
5.554	5.554		

No. 42021 243

7.4.7 47.2-50.2 GHz

ITU Region 1 allocations and footnotes	South African allocations and footnotes	Typical Applications	Notes and Comments
47.2-47.5 GHz	47.2-47.5 GHz		
FIXED	FIXED		
FIXED-SATELLITE	FIXED- SATELLITE (Earth-to-		
(Earth-to-space) 5.552	space) 5.552		
MOBILE	MOBILE		
5.552A	5.552A		
47.5-47.9 GHz	47.5-47.9 GHz		
FIXED	FIXED	The band 47.5- 47.9 GHz is identified for HDFSS; Res.143 applies.	
FIXED-SATELLITE	FIXED- SATELLITE		
(Earth-to-space) 5.552	(Earth-to-space) 5.552		
(space-to-Earth) 5.516B 5.554A	(space-to-Earth) 5.516B 5.554A		
MOBILE	MOBILE		
47.9-48.2 GHz	47.9-48.2 GHz		
FIXED	FIXED		
FIXED-SATELLITE	FIXED-SATELLITE		
(Earth-to-space) 5.552	(Earth-to-space) 5.552		
MOBILE	MOBILE		
5.552A	5.552A		
48.2-48.54 GHz	48.2-48.54 GHz		
FIXED	FIXED		

GOVERNMENT GAZETTE, 9 NOVEMBER 2018

FIXED-SATELLITE (Earth-to-space) 5.552 (space-to-Earth) 5.516B 5.554A 5.555B MOBILE	FIXED- SATELLITE (Earth-to-space) 5.552 (space-to-Earth) 5.516B 5.554A 5.555B MOBILE	The band 48.2-48.54 GHz is identified for HDFSS; Res.143 applies.
48.54-49.44 GHz	48.54-49.44 GHz	
FIXED FIXED-SATELLITE (Earth-to-space) 5.552 MOBILE	FIXED FIXED- SATELLITE (Earth-to-space) 5.552 MOBILE	
5.149 5.340 5.555	5.149 5.340 5.555	
49.44-50.2 GHz	49.44-50.2 GHz	
FIXED	FIXED	
FIXED-SATELLITE	FIXED- SATELLITE	The band 49.44-50.2 GHz is identified for HDFSS; Res.143 applies.
(Earth-to-space) 5.338A 5.552	(Earth-to-space) 5.338A 5.552	
(space-to-Earth) 5.516B	(space-to-Earth) 5.516B	
5.554A 5.555B MOBILE	5.554A 5.555B MOBILE	

No. 42021 245

7.4.8 50.4-52.6 GHz

ITU Region 1 allocations and	South African allocations and	Typical	
footnotes	footnotes	Applications	Notes and Comments
50.4-51.4 GHz	50.4-51.4 GHz		
FIXED	FIXED		
FIXED-SATELLITE (Earth-to-space) 5.338A	FIXED- SATELLITE (Earth-to- space) 5.338A		
MOBILE	MOBILE		
Mobile-satellite	Mobile-satellite		
(Earth-to-space)	(Earth-to-space)		
51.4-52.6 GHz	51.4-52.6 GHz		
			The band 51.4-52.6 GHz is identified for HDFS; Res.75 applies.
FIXED 5.338A	FIXED 5.338A		
MOBILE	MOBILE		
5.547 5.556	5.547 5.556		

GOVERNMENT GAZETTE, 9 NOVEMBER 2018

7.4.9 66-76 GHz

ITU Region 1 allocations and footnotes	South African allocations and footnotes	Typical Applications	Notes and Comments
66-71 GHz	66-71 GHz		
INTER-SATELLITE MOBILE 5.553 5.558	INTER-SATELLITE MOBILE 5.553		
MOBILE- SATELLITE	5.558 MOBILE- SATELLITE		
RADIONAVIGATIO N	RADIONAVIGATIO N		
RADIONAVIGATIO N-SATELLITE	RADIONAVIGATIO N-SATELLITE		
5.554	5.554		
71-74 GHz	71-74 GHz		
FIXED FIXED-SATELLITE	FIXED NF14 FIXED-SATELLITE	Fixed Links (80 GHz) (71 – 76 GHz)	Paired with 81 – 86 GHz.
(space-to-Earth)	(space-to-Earth)	Government use	
MOBILE	MOBILE	Fixed links (71- 76 GHz)	Radio Frequency Spectrum Regulations Amendments (Government Gazette Number 40436, 22 November 2016)
MOBILE- SATELLITE (space-to- Earth)	MOBILE- SATELLITE (space-to- Earth)		
74-76 GHz	74-76 GHz		
FIXED	FIXED NF14	Fixed Links (80 GHz) (71 – 76 GHz)	Paired with 81 – 86 GHz.
FIXED-SATELLITE (space-to-Earth)	FIXED-SATELLITE (space-to-Earth)		

Page 95/183

No. 42021 247

MOBILE	MOBILE	Radio Frequency Spectrum Regulations Amendments (Government Gazette Number 40436, 22 November 2016)
BROADCASTING	BROADCASTING	
BROADCASTING- SATELLITE	BROADCASTING- SATELLITE	
Space research (space-to-Earth)	Space research (space-to-Earth)	
5.561	5.561	

7.4.10 81-86 GHz

ITU Region 1	South African		
allocations and	allocations and	Typical	
footnotes	footnotes	Applications	Notes and Comments
81-84 GHz	81-84 GHz		
FIXED 5.338A	FIXED 5.338A NF14	Fixed Links (80 GHz) (81 –86 GHz)	Paired with 71 – 76 GHz.
FIXED-SATELLITE (Earth-to-space)	FIXED- SATELLITE (Earth-to- space)		
MOBILE	MOBILE		Radio Frequency Spectrum Regulations Amendments (Government Gazette Number 40436, 22 November 2016)
MOBILE-	MOBILE-		
SATELLITE (Earth-to-	SATELLITE (Earth-to-		
space)	space)		
RADIO ASTRONOMY	RADIO ASTRONOMY		
Space research	Space research		
(space-to-Earth)	(space-to-Earth)		
5.149 5.561A	5.149 5.561A		
84-86 GHz	84-86 GHz		

Page 96/183

GOVERNMENT GAZETTE, 9 NOVEMBER 2018

FIXED 5.338A	FIXED 5.338A NF14	Fixed Links (80 GHz) (81 –86 GHz)	Radio Frequency Spectrum Regulations Amendments (Government Gazette Number 40436, 22 November 2016)
FIXED-SATELLITE (Earth-to-space) 5.561B MOBILE RADIO ASTRONOMY	FIXED- SATELLITE (Earth-to- space) 5.561B MOBILE RADIO ASTRONOMY		
5.149	5.149		

which have allocations to the mobile service on a primary basis; and -

7.4.11 31.8-33.4 GHz

ITU Region 1 allocations and footnotes	South African allocations and footnotes	Typical Applications	Notes and Comments
31.8-32 GHz	31.8-32 GHz		
FIXED 5.547A	FIXED 5.547A NF14	HDFS (31.8 – 33.4 GHz)	Channelling plan for 32 GHz band in accordance with ITU- R Rec. F.1520 Annex 1.
RADIONAVIGATION	RADIONAVIGATION		The band 31.8-33.4 GHz is identified for HDFS; Res.75 applies.
SPACE RESEARCH (deep space) (space-to- Earth)			
5.547 5.548	5.547 5.548		
32-32.3 GHz	32-32.3 GHz		

No. 42021 249

FIXED 5.547A RADIONAVIGATION SPACE RESEARCH (deep space) (space-to- Earth)	FIXED 5.547A NF14 RADIONAVIGATION SPACE RESEARCH (deep space) (space-to- Earth)	HDFS (31.8 – 33.4 GHz)	Channelling plan for 32 GHz band in accordance with ITU-R Rec. F.1520 Annex 1. The band 31.8-33.4 GHz is identified for HDFS; Res.75 applies.
5.547 5.548 32.3-33 GHz	5.547 5.548 32.3-33 GHz		
FIXED 5.547A	FIXED 5.547A NF14	HDFS (31.8 – 33.4 GHz)	Channelling plan for 32 GHz band in accordance with ITU-R Rec. F.1520 Annex 1.
INTER-SATELLITE	INTER-SATELLITE		The band 31.8-33.4 GHz is identified for HDFS; Res.75 applies.
RADIONAVIGATION	RADIONAVIGATION		
5.547 5.548	5.547 5.548		
33-33.4 GHz FIXED 5.547A RADIONAVIGATION	33-33.4 GHz FIXED 5.547A NF14 RADIONAVIGATION	HDFS (31.8 – 33.4 GHz)	Channelling plan for 32 GHz band in accordance with ITU-R Rec. F.1520 Annex 1. The band 31.8-33.4 GHz is identified for HDFS; Res.75 applies.
5.547	5.547		

GOVERNMENT GAZETTE, 9 NOVEMBER 2018

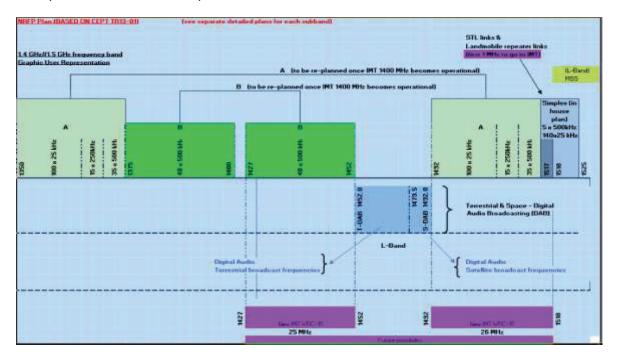
7.4.12 40.5-42.5 GHz

ITU Region 1 allocations and footnotes	South African allocations and footnotes	Typical Applications	Notes and Comments
40.5-41 GHz	40.5-41 GHz		
FIXED	FIXED NF14		
FIXED-SATELLITE (space-to-Earth)	FIXED-SATELLITE (space-to-Earth)		
BROADCASTING	BROADCASTING		
BROADCASTING- SATELLITE	BROADCASTING- SATELLITE		BFWA or MWS (40.5-43.5 GHz).
Mobile	Mobile		The band 40.5-43.5 GHz is identified for HDFS; Res.75 applies.
5.547	5.547		
41-42.5 GHz	41-42.5 GHz		
FIXED	FIXED NF14		
FIXED-SATELLITE (space-to-Earth)	FIXED-SATELLITE (space-to-Earth)		
BROADCASTING	BROADCASTING		
BROADCASTING- SATELLITE	BROADCASTING- SATELLITE		BFWA or MWS (40.5-43.5 GHz).
Mobile			The band 40.5-43.5 GHz is identified for HDFS; Res.75 applies.
5.547 5.551F 5.551H 5.551I	5.547 5.551F 5.551H 5.551I		

No. 42021 251

7.4.13 47-47.2 GHz

ITU Region 1 allocations	South African allocations	Typical	Notes and Comments
and footnotes	and footnotes	Applications	
47-47.2 GHz	47-47.2 GHz		
AMATEUR	AMATEUR	Amateur	
AMATEUR-	AMATEUR-	Amateur	
SATELLITE	SATELLITE	satellite	


This may require additional allocations to the mobile service on a primary basis.

7.5 IMT2020 Proposed actions for identified IMT Frequency bands

The sub-sections below provide more information regarding the status and frequency usage in South Africa for the bands identified for IMT2020 implementation.

7.5.1 1.427-1.518 GHz

The picture included below provide information on the band allocations for this band.

The licensees in this band include Telkom, ESKOM, TRANSNET, SAPS, SANDF, Ekurhuleni and National Research Foundation. There are also provision for Terrestrial Digital Audio Broadcasting as well as Satellite Digital Audio Broadcasting. There are currently no licenses issued and operational in this part of the spectrum in South Africa.

More information on the Channel plans and licensee information can be obtained in Appendix B to this document.

A study need to be performed to determine if changes are required to rearrange the band usage

7.5.2 3.3 – 3.6 GHz

The following studies are currently being undertaken for the stipulated bands

Nigeria, South Africa Zimbabwe & Kenya proposed frequency arrangement for the band 3300-3600 MHz

Introduction

The band 3300-3400 MHz is allocated to the Mobile, except aeronautical Service, through various footnotes, and is Identified for IMT in forty-five (45) countries. The identification for IMT was made under the condition that such IMT systems shall not cause interference nor claim protection from the then incumbent primary services of the band. The countries that are on the IMT Identification footnotes cut across the three regions of the ITU, with thirty-three (33) of the countries being in Africa (R1), six (6) in the Americas (R2) and six (6) in Asia (R3). Considering the interest expressed by Administrations, across all the three regions, for this band to be used for IMT, based on its ability to provide the needed capacity for the deployment of IMT services, and considering the band's adjacency to the near-globally harmonised 3400-3600 MHz band, there scope in giving consideration to a channelling arrangement for a contiguous band covering the range 3300-3600 MHz.

Proposal

It is hereby proposed that, within the ongoing revision of Recommendation ITU-R. M. 1036, consideration be given to an unpaired (TDD) arrangement covering the range 3300-3600 MHz, as depicted in Table 1 below.

It is further proposed that this option be considered in the compatibility studies called upon by Resolution 223 (Rev WRC-15).

Paired arrangements				Un-paired	
Frequency arrangements	Mobile station transmitter (MHz)Centre gap (MHz)Base station 		arrangements (e.g. for TDD) (MHz)		
F6					3300-3600

MHz 33	00 3 600
F4	TDD
	3 300 3 600

Out of block emissions for IMT Base Stations at 3300-3400 MHz in the context of radar systems operating below 3300 MHz

Introduction and background

The frequency band 3 100-3 300 MHz is allocated, in all three Regions, to the radiolocation service on a primary basis, and earth exploration and space research on a secondary basis.

The frequency band 3 300-3 400 MHz is allocated in all three Regions to the radiolocation service on a primary basis, and in Region 2 and Region 3 is also allocated to the fixed, mobile and amateur service on a secondary basis.

The 3300 – 3400 MHz band was identified for IMT at WRC-15 by a number of countries. Resolution **223 (WRC-15)** calls for compatibility studies to assess the feasibility of:

- co-channel sharing between IMT and Radiolocation systems (including land, maritime and airborne radars) operating in the band 3300 3400 MHz; and
- adjacent band sharing between IMT operating in the 3300 3400 GHz band and Radiolocation systems deployed in the 3100 3300 GHz band.

Proposal

This contribution presents in its attachment a study on the impact of aggregated macro BSs into land based radars B, D and I operating in an adjacent channel. The study assumes that the BS uses beamforming antennas. The results show the probability that the interference from the IMT network exceeds the -6 dB I/N threshold, for a range of values of OOB emissions from at the IMT BSs.

The study shows that for a 1% to 10% exceedance probability, the maximum permitted out of block emissions at the BSs should be in the range -44...-50 dBm/MHz.

The signing Administrations propose that WP5D takes account of the material presented in this contribution as part of its process of revising the working document in consideration of the introduction of 5G IMT systems to 3300-3400 MHz.

In band coexistence and compatibility studies between IMT-Advanced systems in 3 300-3 400 MHz USING AAS and Radiolocation systems in 3 100-3 400 MHz

Introduction and background

The frequency band 3 100-3 300 MHz is allocated, in all three Regions, to the radiolocation service on a primary basis, and earth exploration and space research on a secondary basis.

The frequency band 3 300-3 400 MHz is allocated in all three Regions to the radiolocation service on a primary basis, and in Region 2 and Region 3 is also allocated to the fixed, mobile and amateur service on a secondary basis.

The 3300 – 3400 MHz band was identified for IMT at WRC-15 by a number of countries. Resolution **223 (WRC-15)** calls for compatibility studies to assess the feasibility of:

- co-channel sharing between IMT and Radiolocation systems (including land, maritime and airborne radars) operating in the band 3300 3400 MHz; and
- adjacent band sharing between IMT operating in the 3300 3400 GHz band and Radiolocation systems deployed in the 3100 – 3300 GHz band.

Proposal

This contribution presents in its attachment a study on the impact of a single macro and micro urban BS into a type D maritime radar operating co-channel. The study is based on a simple MCL analysis, but it assumes that the BS uses beamforming antennas which are modelled statistically. The results show the likelihood that the interference from the BS exceeds the -6 dB I/N threshold, for 20 km, 50 km and 100 km separation distances between the BS and the radar, and for the tropical and equatorial locations agreed by WP5D.

This study shows that compatibility between IMT with AAS and ship based radars is possible. The table below summarises the results.

	Separation distance (km)	Equatorial P=10%	Equatorial P=20%	Tropical P=10%	Tropical P=20%
Urban Macro	20	58%	58%	58%	58%
	50	80%	80%	80%	93%
	100	86%	93%	93%	98%
Urban Micro	20	92%	92%	92%	92%
	50	95%	95%	95%	99%

Probability that the interference from BS into radar is below	w the – 6dB I/N criterion
---	---------------------------

GOVERNMENT GAZETTE, 9 NOVEMBER 2018

	100	97%	99%	99%	>99%
--	-----	-----	-----	-----	------

The signing administrations propose that the Study in the Attachment is incorporated to the draft report on radar & IMT coexistence in the 3300-3400 MHz

7.5.3 24.25-27.5 GHz

This band is currently being utilised and the following entities are licensed in this band:

- Telkom
- Transnet
- Dark Fibre
- MTN
- Vodacom
- Liquid Telecoms (Neotel)
- Multisource (WBS)

Part of the band is also considered for Metro Fibre in Gauteng.

More information on the current licence assignments can be viewed in Appendix C to this document. Study to be performed into the detail current usage of the band and the availability for IMT2020 applications.

7.5.4 31.8-33.4 GHz

No licensees are recorded i.e. no licenses have been issued in this band and no channel plans have been developed It is recommended that that a Frequency Spectrum Assignment Plan is developed for this band. There are currently no intention to perform a study before the Frequency Spectrum Assignment Plan is developed.

7.5.5 37-40.5 GHz

This band is currently being utilised and there are existing channel plans with spacing or channel width of 3.5 MHz, 7 MHz, 14 MHz and 28 MHz. This band is setup in accordance with ITU-R F.749-1. The Block and Ad Hoc users in this band include the following entities:

- Breedenet
- Comsol Networks
- Cell-C

No. 42021 259

- Digital Mobile Networks
- Dim Dat
- Drs Bloch Partners Inc.
- Eskom
- Faircape Communications T/A Faircom
- I-Gen
- Infogro
- Infovan
- Internet Solutions
- MTN
- Multisource
- Liquid Telecoms (Neotel)
- Network Embedded Technologies
- Overstrand Municipality
- Rosewell Trading
- SAPS
- Scan RF
- Screamer Communications
- Sentech
- Sishen
- Telkom
- Tenet
- Transnet
- Tswane University of Technology
- Vodacom

It is possible that some of these licensees are not licensed anymore.

The existing channel plans are available in Appendix D to this document.

Study to be performed into the detail current usage of the band and the availability for IMT2020 applications.

7.5.6 40.5-42.5 GHz

This band is currently being utilised and there are existing channel plans with spacing or channel width of 7 MHz, 14 MHz, 28 MHz, 56 MHz and 112 MHz. There are no records available from ICASA on licensees in this frequency band.

The existing channel plans are available in Appendix E to this document.

Study to be performed into the detail current usage of the band and the availability for IMT2020 applications.

7.5.7 45.5-47 GHz

No licensees are recorded i.e. no licenses have been issued in this band and no channel plans have been developed

It is recommended that that a Frequency Spectrum Assignment Plan is developed for this band. There are currently no intention to perform a study before the Frequency Spectrum Assignment Plan is developed.

7.5.8 47-47.2 GHz

No licensees are recorded i.e. no licenses have been issued in this band and no channel plans have been developed

It is recommended that that a Frequency Spectrum Assignment Plan is developed for this band. There are currently no intention to perform a study before the Frequency Spectrum Assignment Plan is developed.

7.5.9 47.2-50.2 GHz

No licensees are recorded i.e. no licenses have been issued in this band and no channel plans have been developed

It is recommended that that a Frequency Spectrum Assignment Plan is developed for this band. There are currently no intention to perform a study before the Frequency Spectrum Assignment Plan is developed.

7.5.10 50.4-52.6 GHz

No licensees are recorded i.e. no licenses have been issued in this band and no channel Plans have been developed

It is recommended that that a Frequency Spectrum Assignment plan is developed for this band. There are currently no intention to perform a study before the Frequency Spectrum Assignment Plan is developed.

No. 42021 261

7.5.11 57.0 – 66 GHz

No licensees are recorded, and no channel plans have been developed The V-Band has been Gazetted.in Government Gazette 40436 dated 22 November 2016 Notice 781 of 2016.

It is recommended that that a Frequency Spectrum Assignment plan is developed for this band. There are currently no intention to perform a study before the Frequency Spectrum Assignment Plan is developed.

7.5.12 66-76 GHz (E-Band)

No licensees are recorded i.e. no licenses have been issued in this band 66 to 71 GHz and no channel plans have been developed. License information and Channel plans are available for the Band 71 to 76 GHz. This frequency band is paired with 81 to 86 GHz.

See Appendix F for more information. .FDD system are deployed with channel spacing of 250 MHz. Find more information on the self-coordinated Block of frequencies in the E-Band and the ICASA-coordinated Block in Appendix G to this document. See Government Gazette 40815 dated 28 April 2017 Notice 317 of 2017. The entities self-coordinated in this band include:

- Vodacom
- MTN
- Sonic Computers
- EOH
- Fusion Wireless
- Liquid Telecommunications
- Francois Theron Photography
- Others not self-coordinated

It is recommended that that a Frequency Spectrum Assignment plan is developed for the band.66 to 71 GHz Also see Government Gazette 40436 dated 22 November 2016 Notice 781 of 2016.

Study to be performed into the detail current usage of the band and the availability for IMT2020 applications.

7.5.13 81-86 GHz (E-Band)

The band 81 to 86 GHz is paired with 71 to 76 GHz. See Government Gazette 40815 dated 28 April 2017 Notice 317 of 2017. Find more information on the self-coordinated

Block of frequencies in the E-Band and the ICASA-coordinated Block in Appendix G to this document.

The entities self-coordinated in this band include:

- Vodacom
- MTN
- Sonic Computers
- EOH
- Fusion Wireless
- Liquid Telecommunications
- Francois Theron Photography
- Others not self-coordinated

Also see Government Gazette 40436 dated 22 November 2016 Notice 781 of 2016.

Study to be performed into the detail current usage of the band and the availability for IMT2020 applications.

No. 42021 263

8 IMT Roadmap: Time Frame

8.1 Time frame overview

The following was a draft indicative timeline for the deployment of IMT bands and the associated migration timelines, mainly for the 450-470 MHz band. There are some essential conditions for this current draft time plan:

- 1. The SAPS will finish migration in time and free up their current spectrum by the end of 2014;
- The broadcasters will complete the DTT process with Analogue Switch Off by mid-2015;
- 3. Transnet will embark the modernisation from analogue to digital systems;
- 4. Potential co-existence and other trials for the 450-470 MHz band will be completed by the end of 2016 to enable a decision to be made concerning the options for co-existence; and
- 5. An overall migration timeframe of 8 years up to 2022 for the 450-470 MHz band is expected to give all players sufficient time for migration.

8.2 Calendar of expected activities by year

YEAR	Activities foreseen to take place and deadlines foreseen to occur within the Calendar Year
2014	 380-400 MHz band has already been assigned as PPDR usage band with TETRA as one technological option. SAPS have already started migration out of 406-420 MHz to TETRA in the 380-387//390-397 MHz band. The remaining 2×3 MHz in the 380-400 MHz band is available for use by emergency, security, and airport services. Process of assignment of 700, 800 and 2600 FDD IMT-spectrum starts.
	 As per ITU Resolutions 224 WRC07 and 232 WRC12, the DTT process is completed within 470- 694 MHz and Analogue Switch Off (ASO) takes place by mid-2015.
2015	 Preparation of co-existence trials for 450-470 MHz. Implementation / rollout of new IMT spectrum (700, 800 and 2600 MHz) starts after ASO. SAPS finalises network migration frees up spectrum in 406-410//416-420 MHz and 413-416//423-426 MHz. The 406-410//416-420 MHz, 410-413//420-423 MHz and 413-416//423-426 MHz bands free
	for use for TETRA or PMR networks and services – coordinated by the Authority.

	• Coexistence trials with respect to the 450-470 MHz band will be carried out during 2016 in urban and rural areas. To evaluate guard bands to broadcast channel 21 and TETRA-like narrowband systems (In concordance with potential IMT450-vendors and Transnet).								
	• The 406-410//416-420 MHz and 413-416//423-426 MHz bands potentially deployed as Migration destination bands for TETRA or PMR networks and services,								
	Other licensees of 450-470 MHz band start migration to:								
	• 403-406 MHz (unpaired);								
	• 426-430 MHz (unpaired); or								
2016	 440-450¹³MHz bands (paired or unpaired); and 								
	 In case of PPDR-use - also to 387-390//397-400 MHz 								
	migration completed by 2022 (max 7 years).								
	• Fixed links (e.g. Telkom) potentially migrated to 2025-2110 MHz band and/or 2200 – 2285 MHz band.								
	Migration should start in rural areas to clear spectrum for new IMT450 licensees:								
	 Phase 1 target: >80% of rural-used licenses is cleared for IMT450 end of 2018 (3 years); 								
	Phase 2: 80% of urban used licenses is cleared for IMT450 end of 2022 (7 years); and								
	Phase 3: 100% of 450-470 MHz is cleared by end of 2024 (9 years).								
	Depending on co-existence trial results ¹⁴ :								
	• Co-existence possible : Transnet, SAA or other licensees start migration in co-existence bands within 450-470 MHz, fine tuning of potential splitters, etc.								
2017	• Migration required : Transnet, SAA and others start migration of operation-relevant services into new destination bands, e.g. TETRA in 410-413//420-423 MHz with spectrum efficient use - target maximum 5 years of migration plus 2 years of dual illumination.								
	Transnet may also opt to migrate to GSM-R ¹⁵								
	• Present								
2018	• Potential 2 nd assignment of TDD IMT spectrum (i.e. IMT750, IMT2600 and IMT3500).								
	• IMT450 licensee starts rollout in 450-470 MHz band in agreed areas (e.g. rural first followed by								

¹³ It might be necessary to also clear the 449-450 MHz band to increase IMT-spectrum.

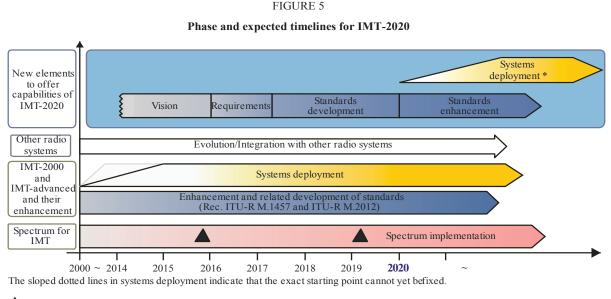
¹⁴ The licensees are at liberty to migrate out of 450-470 MHz earlier, independently from the results of the coexistence trials.

¹⁵ In addition, possibly later to LTE-R in the IMT850 band. It can be anticipated that Transnet (and more probably PRASA) would use a TETRA network for operation and mission critical services and use LTE-R for broadband services. Much of the GSM-R equipment can be reused for LTE-R.

No. 42021 265

		urban) according to migration Phase 1 where there is no interference to Transnet or other licensees (e.g. reduced power levels); existing licensees remain prioritised.
2020-	•	Target of SA Connect broadband initiative in South Africa is achieved: (ref IMT coverage and capacity obligations in Chapter 0).
2022	•	Transnet completes migration (deployment) and continues dual illumination phase (in line with Transnet`s option 3
2024	•	All licensees have finished spectrum migration or service migration to new operations and shut down all systems in the IMT450 band.
	•	IMT450 licensee reached coverage license obligations.

8.3 Timelines IMT 2020 and beyond


In planning for the development of IMT-2020 as well as future enhancement of the existing IMT, it is important to consider the timelines associated with their realization, which depend on a number of factors:

- user trends, requirements and user demand;
- technical capabilities and technology development;
- standards development and their enhancement;
- spectrum matters;
- regulatory considerations;
- system deployment.

All of these factors are interrelated. The first five have been and will continue to be addressed within ITU. System development and deployment relates to the practical aspects of deploying new networks, taking into account the need to minimize additional infrastructure investment and to allow time for customer adoption of the services of a new system. ITU will complete its work for standardization of IMT-2020 no later than the year 2020 to support IMT-2020 deployment by ITU members expected from the year 2020 onwards.

The timelines associated with these different factors are depicted in Fig. 5. When discussing the phases and timelines for IMT-2020, it is important to specify the time at which the standards are completed, when spectrum would be available, and when deployment may start.

GOVERNMENT GAZETTE, 9 NOVEMBER 2018

: Possible spectrum identification at WRC-15 and WRC-19

* : Systems to satisfy the technical performance requirements of IMT-2020 could be developed beforyear 2020 in some countries. : Possible deployment around the year 2020 in some countries (including trial systems)

M.2083-05

8.3.1 Medium term

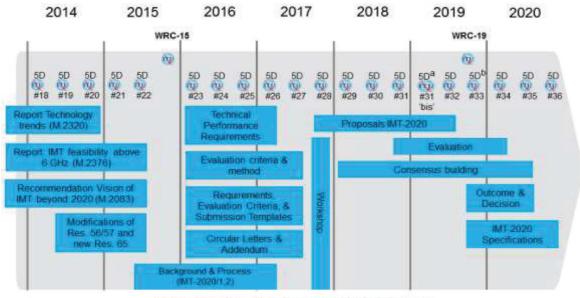
In the medium-term (up to about the year 2020) it is envisaged that the future development of IMT-2000 and IMT-Advanced will progress with the ongoing enhancement of the capabilities of the initial deployments, as demanded by the marketplace in addressing user needs and allowed by the status of technical developments. This phase will be dominated by the growth in traffic within the existing IMT spectrum, and the development of IMT-2000 and IMT-Advanced during this time will be distinguished by incremental or evolutionary changes to the existing IMT-2000 and IMT-Advanced radio interface specifications (i.e. Recommendations ITU-R M.1457 for IMT-2000 and ITU-R M.2012 for IMT-Advanced, respectively).

It is envisaged that the bands identified by WRCs will be made available for IMT within this timeframe subject to user demand and other consideration.

8.3.2 Long term

The long term (beginning around the year 2020) is associated with the potential introduction of IMT-2020 which could be deployed around the year 2020 in some countries. It is envisaged that IMT-2020 will add enhanced capabilities described in § 5, and they may need additional frequency bands in which to operate.

8.4 Workplan, timeline, process and deliverables for the future development of IMT


Working Party 5D has developed a work plan, timeline, process and required deliverables for the future development of IMT, necessary to provide by 2020 timeframe, the expected ITU-R outcome of evolved IMT in support of the next generation of mobile broadband communications systems beyond IMT-Advanced.

Circular Letter(s) are expected to be issued at the appropriate time(s) to announce the invitation to submit formal proposals and other relevant information.

It has been agreed that the well-known process and deliverable formats utilized for both IMT-2000 and IMT-Advanced should be utilized also for IMT-2020 and considered as a "model" for the IMT-2020 deliverables to leverage on the prior work. In WP 5D #20 the process and related deliverables was agreed as shown in Figure 1 and Table 1.

Dates has been decided for RA-19 (21-25 October 2019) and WRC-19 (28 October -22November 2019). The WP 5D #32 (July) is the main meeting for year 2019. The WP 5D #33 is to be held in December with a focus on the evaluation process (WG Technology Aspects). If needed there is an opportunity for expert meeting to focus on preparation towards WRC-19 (WG General Aspects and WG Spectrum Aspects) prior to the WP 5D #32 (July).

Detailed Timeline & Process For IMT-2020 in ITU-R

(a) – five day meeting, (b) – focus meeting on Evaluation (Technology) Note: While not expected to change, details may be adjusted if warranted.

	IMT-Advanced in WP model document	Meeting #24 Document IMT- WG GEN (June 2016) ADV/1 (SWG CL) "Background on IMT-Advanced"	Meeting #24 Document IMT- WG TECH (June 2016) ADV/2 (SWG "Submission and COORD) evaluation process and consensus building"	Meeting #26 Report ITU-R WG TECH (February 2017) M.2134 (SWG RADIO) "Requirements related to technical performance for IMT-Advanced radio interface(s)"	Meeting #27 Report ITU-R WG TECH (June 2017) M.2135 (SWG EVAL) "Guidelines for evaluation of radio interface technologies for IMT-Advanced"	Meeting #27 Report ITU-R WG TECH (June 2017) M.2133 (SWG COORD) "Requirements, evaluation criteria and submission templates for the development of IMT- Advanced"
d if warranted.	timing		Meeting #22 (June 2015)	Meeting #23 (February 2016)	16)	Meeting #23 (February 2016
details may be adjusted if warranted	Aspect to be addressed in proposed deliverable	I Background on IMT-2020	 The Submission and evaluation process and consensus building for IMT- 2020 as well as the "timeline" for IMT- 2020 	General Technical Performance Requirements expected of a technology to satisfy IMT-2020	Evaluation Criteria and Evaluation Methods for IMT- 2020 technologies	Specific Requirements of the candidate technology related to submissions, the evaluation criteria and submission templates
1 While not expected to change, de	Proposed IMT- 2020 related deliverable	Doc. IMT-2020/001 IMT-2020 Background"	Doc. IMT-2020/002 IMT-2020 Process"	Draft new Report ITU-R M.[IMT- 2020. TECH PERF REQ]	Draft new Report ITU-R M.[IMT- 2020. EVAL]	Draft new Report ITU-R M.[IMT- 2020. SUBMISSION]
hile not expec	Anticipated IMT- 2020 related deliverables Item					

Page 115/183

268 No. 42021

TABLE 11

Reproduced by Data Dynamics in terms of Government Printers' Copyright Authority No. 9595 dated 24 September 1993

WG GEN	WG TECH
(SWG CL)	(SWG COORD)
Circular Letter 5/LCCE/2 and Addenda "Invitation for submission of proposals for candidate radio interface technologies for the terrestrial components of the radio interface(s) for IMT-Advanced and invitation to participate in their subsequent	For example, For example, Documents IMT- ADV/4 thru IMT-ADV/9 "Acknowledgement of candidate submission from under step 3 of the IMT-Advanced process (technology)"
Meeting #36	Meeting #32
(October 2020)	(July 2019)
Meeting #23	Meeting #28
(February 2016)	(October 2017)
The official ITU-R announcement of the IMT-2020 process and the invitation for candidate technology submissions	Capturing in ITU-R documentation the inputs documents and the initial view of suitability as a valid submission
Circular Letter IMT-2020	Doc. IMT- 2020/YYY Input Submissions Summary

1

9

Page 116/183

No. 42021 269

```
270 No. 42021
```

9 IMT Spectrum and Universal Service Obligations

9.1 Objectives of SA Connect

The South Africa Connect broadband policy targets were defined as indicated in Table 18 below:

Target	Penetration measure	Baseline (2013)	By 2016	By 2020	By 2030
Broadband access in Mbps user experience	% of population	33.7% internet access	50% at 5 Mbps	90 % at 5Mbps 50% at 100 Mbps	100% at 10 Mbps 80% at 100 Mbps
Schools	% schools	25% connected	50% at 10 Mbps	100% at 10 Mbps 80% at 100 Mbps	100% at 1 Gbps
Health facilities	% of health facilities	13% connected	50% at 10 Mbps	100% at 10 Mbps 80% at 100 Mbps	100% at 1 Gbps
Government facilities	% of government offices		50% at 5 Mbps	100% at 10 Mbps	100% at 100 Mbps

Table 18: SA Connect Targets

Mobile broadband is the critical resource for the provision of broadband for all in South Africa due to the superior roll-out pace possible with wireless and limited reach of fixed access networks with future fibre to the building / home infrastructure unlikely to extend much beyond affluent high-density neighbourhoods in the core urban areas.

9.2 Broadband challenge in South Africa

Access to broadband is a necessary condition of economic development in the modern economy. Although attention has been paid to the economic benefits of broadband as calculated by the World Bank, it is probably more accurate to note the converse, that an area that does not have broadband will suffer relative economic decline.

The broadband challenge in all countries is to overcome the specific problems associated with geography and the distribution of population and the manner in which the economic viability of broadband rollout varies from area to area due to the significant differences in financial outlay required and differences in the level of demand (or ability to pay).

A general rule of telecommunications is that, by virtue of geography, it is generally true that the highest revenue customers are the cheapest and easiest to serve as business,

No. 42021 271

and the rich tend to cluster. The main providers of broadband in South Africa are the mobile customers and it is probably true to say that the mobile providers are fast approaching the point where the economic customers have been captured. In the GSM rollout, a key driver was the need to demonstrate market share and competitive coverage.

Therefore, even when lower frequencies are made available, providers generally consider that rural, underserved areas are uneconomic for the provision of service as income levels are considered to be low. A lack of broadband in a rural area means that those inhabitants will be excluded from participating in the digital economy, exacerbating the disadvantages they have inherited by virtue of their physical address.

In South Africa, the landscape is dominated by a hierarchy of metropolitan areas, with one dominant metropolitan area (Gauteng), three second tier metropolitan areas (Cape Town, Durban and the smaller Port Elizabeth) and then a hierarchy of cities serving sub-regions. The rest of the country is then characterised by two types of economic landscape:

- Areas of low population density characterised by commercial farming areas which towards the west become semi-arid and virtually unpopulated; and
- Areas of relatively high population density characterised by near-subsistence farming with an evenly-dispersed, fairly high density population.

The priority underserved areas

The map of population density (Figure 16) illustrates this pattern very clearly and equally illustrates the broadband challenge. There are areas of high population density in the north east of the Eastern Cape, substantial areas of Kwa-Zulu Natal and Limpopo and the east of Mpumalanga province which are clearly rural and it is these areas that are generally underserved. As a rough estimate, probably over 80% of the population that is underserved occupies less than 10% of the country's land. The population in these areas is fairly dispersed and it can be contended that it is in these areas that the 700 MHz and 800 MHz bands and potentially the 450-470 MHz band will be required to meet universal service targets¹⁶. The importance of these bands is that they allow coverage of far wider areas using existing base stations and reducing the number of additional base stations (and subsequently reducing the major cost element).

The licensees assigned to these bands should be subject to strict and enforced coverage targets¹⁷.

¹⁶ The Northern Cape and similar areas also provide challenges for coverage, but here the population tends to be more clustered and the problem is more one of backhaul than the frequency used for access.

¹⁷ The value of the digital dividend frequencies to operators probably does lie in the capacity that is made available in areas that already have existing coverage. The value to the nation lies in the potential universal coverage that these bands can provide and the assignment and licensing process should reflect this.

GOVERNMENT GAZETTE, 9 NOVEMBER 2018

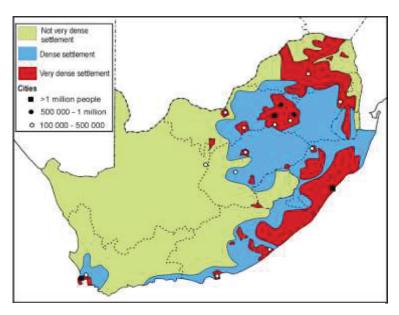


Figure 16: Population densities in South Africa

9.3 Considerations for assignment

9.3.1 To link or not to link frequency bands

The Authority has been considering linking low frequencies with high frequencies (for example the 800 MHz band with the 2.6 GHz band). The argument is that this will allow the 2.6 GHz band to be used to provide capacity for 'hotspots' where more capacity is required.

The issue to be considered is what the potential outcomes are if lower frequencies are <u>not</u> linked to higher frequencies:

- A licensee who only has assignments in the lower frequencies may find that the frequencies become congested and capacity cannot be increased in the urban areas which the operator is relying on to make a profit to offset investments; and
- A licensee who only has an assignment in higher bands (such as 2600 MHz or higher) and is not compelled to provide universal service due to the propagation challenges of the band, can simply focus on the urban 'hotspots' (large and small) which generate revenue and by doing so potentially undermine the financial viability of the universal service provider.

These cases are somewhat hypothetical, but do illustrate the issues that need to be considered in effective assignment.

9.3.2 Individual Assignment or Wholesale

The issue of whether the 700 and 800 MHz bands (or even 450-470 MHz band) should be assigned on an individual basis or on a wholesale, open-access basis is beyond the

scope of the present document, however whatever the option that is chosen, obligations should be imposed on the licensee.

9.4 Assignment: Obligations for Licensees

This section illustrates some indicative minimum obligations for licensees of IMT bands in order to achieve universal service targets. However, the details will be aligned with the Broadband policy and contained in the relevant ITA.

Coverage and capacity obligation per IMT band in South Africa:

- 450-470 MHz
 - Coverage obligations for licensee by end of 2025 (mobile terminals assumed):
 - All areas with at least 100 inhabitants to be covered indoor (with indoor penetration assumption of 10 dB) with minimum user data rate of 150 kbps uplink and 300 kbps downlink;
 - All main roads (national and provincial routes) in-car (equal to at least 10 dB penetration assumption) and metropolitan railways¹⁸(equal to at least 20 dB penetration assumption in carriage).
 - All smaller settlements with less than 100 inhabitants (and more than 20 inhabitants) to be covered outdoor with minimum user data rate of 150 kbps uplink and 300 kbps downlink;
 - Special areas of interest such as tourism areas to be covered outdoor with minimum user data rate in 150 kbps uplink and 300 kbps downlink; and
 - The outdoor obligations could be met by using fixed mobile stations with external high gain antennas and Wi-Fi service distribution. This coverage has to be assigned separately in coverage maps.
 - FDD and TDD: Capacity obligation of minimum uplink and downlink user data rate of 100 kbps for 90% of active users in the cell in the busy hour.
- 700 MHz or 800 MHz (different assignments of 2×5 MHz)
 - Coverage obligations for licensees by end of 2020 (mobile terminals assumed):
 - All centres with at least 1000 inhabitants to be covered indoor (with indoor penetration assumption of 15 dB) with minimum user data rate of 150 kbps uplink and 500 kbps downlink.
 - Capacity obligation of minimum uplink user data rate of 100 kbps for 90% of active users in the cell in the busy hour.
 - Capacity obligation of minimum downlink user data rate of 300 kbps for 90% of active users in the cell in the busy hour.
- 850 MHz (2×5 MHz currently assigned to Neotel, now used for CDMA)

¹⁸ Transnet (and PRASA) may reuse their existing 450 band antennas to improve in-train broadband coverage via Wi-Fi connectivity for smart terminals.

```
274 No. 42021
```

- Coverage obligations to be defined pending resolution of interference situation with GSM-R.
- Capacity obligation of minimum uplink user data rate of 100 kbps for 90% of active users in the cell in the busy hour.
- Capacity obligation of minimum downlink user data rate of 300 kbps for 90% of active users in the cell in the busy hour.
- Capacity obligations must also be met by current licensees.
- 2300-2400 MHz (different lots of 20 MHz)
 - Note that 60 MHz are assigned to Telkom and 20 MHz to SMMT, so only 20 MHz is available for new assignments.
 - TDD: Capacity obligation of minimum uplink and downlink user data rate of 500 kbps for 90% of active users in the cell in the busy hour.
 - Capacity obligations must also be guaranteed by current licensees.
- 2500-2570 MHz paired with 2620-2690 MHz (different lots of 2×5 MHz) and one TDD licensee for 50 MHz
 - FDD: Capacity obligation of minimum uplink user data rate of 500 kbps for 90% of users in the cell in the busy hour.
 - FDD: Capacity obligation of minimum downlink user data rate of 500 kbps for 90% of active users in the cell in the busy hour.
 - TDD: Capacity obligation of minimum uplink and downlink user data rate of 500 kbps for 90% of active users in the cell in the busy hour.
- 3400-3600 MHz (different lots of 20 MHz)
 - TDD: Capacity obligation of minimum uplink and downlink user data rate of 500 kbps for 90% of active users in the cell uplink and downlink busy hour.

The minimum service requirements are based on minimum user data rates of current 2G and 3G networks and are intentionally kept low in order to achieve agreement to harmonise minimum service requirements for all bands for all cells. Existing assignments must use these minimum user data rates otherwise there is the risk that operators might implement traffic shifting mechanisms to downgrade users to bands without minimum service requirement obligations. These service requirements will also hold for future assignments in, e.g. 1700-2300 MHz bands.

The minimum service requirements are differentiated with lower requirements in coverage bands below 1 GHz and higher requirements for capacity bands higher than 1 GHz. Therefore, the operators still have the possibility of quality-driven traffic management, while still ensuring a minimum performance in all bands and focusing on higher data rates in higher bands with higher capacity density. This also improves spectral efficiency due to more efficient usage of resources in higher bands.

10 Considerations Arising out of IMT Roadmap 2014 & 2018

10.1 Considerations IMT Bands for implementation 2014 Roadmap

This process is still ongoing and joins up with the IMT Roadmap 2018. Within this IMT roadmap, the following important recommendations will be highlighted:

450 - 470 band

- The IMT450 band may prove essential for cost-efficient rural coverage for the SA Connect initiative. Potential deployments in IMT700 or IMT800 bands would increase radio access network deployment costs significantly by 55-85% dependent on the target areas and services.
- IMT450 TDD uplink would only slightly reduce coverage and remains the opportunity for uplink-favourable IMT implementation. IMT450 TDD downlink would reduce coverage gain significantly and is not recommended.
- IMT450 has an advantage for IMT TDD due to improved uplink schemes and high uplink demands due to M2M applications. There is the potential for spectrum pairing with higher TDD spectrum bands.
- The IMT450 band might also be attractive to PPDR-supporting services in addition to the SAPS network. 2×5 MHz FDD would be appropriate in this case. TDD is not suggested for PPDR due to reduced coverage characteristics.
- The 450-470 MHz band should be used exclusively for IMT. Potential co-existence scenarios could be deployed dependent on satisfactory trial results:
 - Therefore, the 450-470 MHz band should be used for IMT, for basic broadband coverage in rural areas and potential future services like M2M and connected car application. Both demands will evolve over the following years with the availability of new IMT networks and the availability of devices; and
 - Migration should start as soon as possible dependent on the spectrum vacated by SAPS as one of the targeted destination bands 406-430 MHz,

700 and 800 bands

- IMT700 and IMT800 offer 2×63 MHz (for both ITU Region 1 and ITU Region 3).
- Option 2 and Option 3 (ITU Region 1) offer in addition 10-15 MHz TDD spectrum and are therefore more spectrum-efficient if the TDD band is used;
 - potential channelisation of IMT750 will be decided at WRC-15 and based on WP5D recommendation.

- Option 1 (ITU Region 3) offers a larger ecosystem currently, but ITU Region 3 equipment could also be used in ITU Region 1, at least within the 30 MHz international roaming band.
- In addition, Option 1 (ITU Region 3) would offer 2×10 MHz instead of 2×5 MHz in IMT850 only if there is no implementation of GSM-R, but this is not the case for South Africa. Therefore, in this context, the Option 2 and 3 (ITU Region 1) solutions are more advantageous.

CDMA and GSM-R

- Neotel's assignment in IMT850 is now 827-832 // 872-877 MHz and overlapping to the GSM-R assignment from 876-880MHz // 921-925 MHz. Neotel has to ensure the migration to 825-830 // 870-875 MHz, which is 1 MHz next to the GSM-R band; therefore the IMT850 licensees need to implement interference mitigation measures (e.g. filters) in areas with GSM-R sites.
- GSM-R is currently deployed by PRASA and it is expected that GSM-R will also have a long term usage. The next possible migration step might be from GSM-R in 877.695-880//921-925 MHz to LTE-R in IMT850 band. GSM-R investment might be optimised in the case of proper usage of SRAN equipment and further upgrades to LTE.

<u>900 band</u>

- The IMT900 migration from GSM to LTE should be possible in 2×5 MHz steps immediately. The additional demands of broadband IMT require spectrum harmonisation to allow licensees to have contiguous assignments. Consolidation will not be initiated until all operators have aligned to Phase 2 (Scenario 3) in order to carry out a one-step migration towards full IMT-usage with 2×5 MHz bands.
- Current guard bands have to be reduced between the operators on mutual agreement to improve spectral efficiency.

1800 and 2100 bands

- Potential migrations of GSM1800 or UMTS2100 bands to broadband IMT1800 or IMT2100 are possible and should be allowed based on operators capacity needs.
- IMT2100 extensions of TDD and FDD spectrum still need to be discussed and agreed at ITU level.

2300 band

- The IMT2300 band is almost fully used. The only free spectrum of 20 MHz could be assigned to WBS to facilitate the clearance of 2550-2565 MHz, which would require new equipment and antennas. There might be a temporary solution for WBS to move their services to 2585-2600 MHz until the new IMT-TDD licensee would need the new spectrum.
 - The 2400-2500 MHz band should be used for ISM applications and DECTservices; In case of interference with 2380-2400 MHz assignments, the ISMband operator needs to establish a sufficient guard band.

2600 band

- IMT2600 should follow the worldwide option 1 with 2×70 MHz FDD and 50 MHz TDD.
- The option could be considered that the IMT TDD spectrum (IMT450, IMT750 and IMT2600) be assigned to one (wholesale) operator to strengthen the TDD ecosystem in South Africa.

<u>3500 band</u>

- IMT3500 should be used for 200 MHz for TDD, with special downlink schemes starting from 3400 MHz and uplink schemes ending at 3600 MHz. At least 5 MHz of guard band needs to be used with lower priority. There is a general preference for TDD in higher bands due to the asymmetry of TDD and better decoupling characteristics, especially with the IMT3500 band because of the economy of scale and potential WiMAX to LTE migrations, (which is not relevant for South Africa because FDD is in use now with the tendency of clearing the band by the current licensees).
- If the concept of Managed Spectrum Parks (MSP) is introduced in South Africa, the 5 MHz guard band between downlink and uplink schemes in IMT3500 might be enlarged to 20 MHz for MSP use.

Taking into account all above-mentioned IMT-assignments, the IMT-spectrum bandwidths would increase from 470 MHz to ~1010 MHz.

For all assignments minimum coverage and capacity requirement, thresholds should be introduced to secure capacity demands and meet the targets of SA Connect.

10.2 Considerations IMT Roadmap frequency bands for IMT2020 Implementation

More input required on the time-frame and implementation challenges considering the South African situations, implementation of the bands identified for IMT as wel as ITU Region 1 considerations.

See section 8.2 for frequency bands.

```
278 No. 42021
```

GOVERNMENT GAZETTE, 9 NOVEMBER 2018

Appendix A Glossary

3G	means 3G or 3rd generation mobile telecommunications is a generation of standards for mobile phones and mobile telecommunication services fulfilling the International Mobile Telecommunications-2000 (IMT-2000) specifications by the ITU						
3GPP	means the 3rd Generation Partnership Project (3GPP) which consists of six telecommunications standard development organisations						
Act	means the Electronic Communications Act, 2005 (Act No. 36 of 2005);						
Amateur	means a person who is interested in the radio technique solely for a private reason and not for financial gain and to whom the Authority has granted an amateur radio station licence and shall mean a natural person and shall not include a juristic person or an association: provided that an amateur radio station licence may be issued to a licensed radio amateur acting on behalf of a duly founded amateur radio association;						
АРТ	means Asia-Pacific Telecommunity which is the focal organisation for ICT in the Asia-Pacific region. The APT has 38 member countries, 4 associate members and 131 affiliate members.						
Assignment	means the authorisation given by the authority to a licensee to use a radio frequency or radio frequency channel under specified conditions;						
Authority	means ICASA is the Independent Communications Authority of South Africa;						
Base station	means a land radio station in the land mobile service for a service with land mobile stations;						
BFWA	means Broadband Fixed Wireless Access						
BS	means Broadcast Service or Base Station						
втх	means Base Transceiver;						
ссти	means Closed-circuit television						
СА	means Carrier Aggregation						
CDMA	means Code Division Multiple Access						
CEPT	means Conference of European Posts and Telecommunications Authorities;						
СоМР	means Co-ordinated Multi Point						
DAB	means Digital Audio Broadcasting which is a digital radio technology for broadcasting radio stations						
DECT	means Digital Enhanced Cordless Telecommunications 1880 - 1900MHz which is a digital communication standard, primarily used for creating cordless phone systems						

DF	means Dual Frequency						
DoC	means Department of Communication						
DTT	means Digital Terrestrial Television						
DTT Mobile	means Digital Terrestrial Television for Mobile services						
EIRP	means effective isotropical radiated power;						
ERP	means effective radiated power, which is the product of the power supplied to an antenna and its gain relative to a half wave dipole in a given direction;						
ECA	means the Electronic Communications ACT of South Africa						
EDGE	means Enhanced Data rates for GSM Evolution and is a digital mobile phone technology that allows improved data transmission rates as a backward-compatible extension of GSM						
ETSI	means European Telecommunications Standards Institute						
FDD	means Frequency Division Duplex						
FDMA	means Frequency Division Multiple Access						
FMP	means Frequency Migration Plan						
FPLMTS	means Future Public Land Mobile Telecommunications System also called IMT-2000						
FTBFP 2008	means Final Terrestrial Broadcast Frequency Plan of 2008						
FWA	means Fixed Wireless Access						
FWBA	means Fixed Wireless Broadband Access						
Gbps	means Gigabits per second						
GHz	means Gigahertz of Radio Frequency Spectrum;						
GSM	means Global System for Mobile Communications,(originally Groupe Spécial Mobile), and is a standard set developed by the European Telecommunications Standards Institute (ETSI) to describe technologies for second generation (2G) digital cellular networks						
GSM-R	means GSM for Railways						
IEEE	means the Institute of Electrical and Electronics Engineers						
ІМТ	means International Mobile Telecommunications						
INMARSAT	means International Maritime Satellite						
ют	means Internet of Things						
ISM	means Industrial, Scientific and Medical						

GOVERNMENT GAZETTE, 9 NOVEMBER 2018

ΙΤυ	means International Telecommunication Union						
ITU RR	means International Telecommunication Union Radio Regulations						
kHz	means Kilohertz of Radio Frequency Spectrum						
Land mobile service	means a mobile radio-communication service between fixed stations and mobile land stations, or between land mobile stations						
LEO	means Low Earth Orbit satellites						
LMR	means Land Mobile Radio						
Low Power Radio	means radio apparatus, normally hand-held radios used for short range two- way voice communications;						
LTE	means Long Term Evolution and is a standard for wireless communication of high-speed data for mobile phones and data terminals. It is based on the GSM/EDGE and UMTS/HSPA network technologies						
M2M	means Machine to Machine						
MFN	means Multiple Frequency Networks						
MHz	means Megahertz of Radio Frequency Spectrum;						
МІМО	means Multiple-Input and Multiple-Output and is the use of multiple antennas at both the transmitter and receiver to improve communication performance						
Mobile station	means a radio station that is intended to be operated while it is in motion or while it is stationary at an unspecified place						
Model Control apparatus	means radio apparatus used to control the movement of the model in the air, on land or over or under the water surface						
мтх	means Mobile Transceiver						
Non-specific Short Range Devices	means radio apparatus used for general telemetry, telecommand, alarms and data applications with a pre-set duty cycle (0.1%: S duty cycle< 100%)						
NRFP	means the National Radio Frequency Plan 2013 for South Africa						
ОВ	means Outside Broadcast						
PAMR	means Public Access Mobile Radio						
PMR	means Public Mobile Radio and is radio apparatus used for short range two- way voice communications;						
PPDR	means Public Protection and Disaster Relief as defined in ITU-R Report M.2033.						
PRASA	Means Passenger Rail Agency of South Africa						
PtM	means Point to Multipoint						
PtP	means Point to Point						

Page 127/183

RATG	means Radio Access Technology Group						
Radio trunking	means a technique by means of which free channels out of a group of radio frequency channels allocated to a base station are automatically made						
	available for the establishment of a connection between the stations of a						
	user						
Radio-	means all electronic communication by means of radio waves;						
communication							
Relay or repeater station	means a land station in the land mobile service;						
RFID	means Radio Frequency IDentification and is a wireless system that uses radio frequency communication to automatically identify, track and manage objects, people or animals. It consist of two main components viz, a tag and a reader which are tuned to the same frequency						
RFSAP	means Radio Frequency Spectrum Assignment Plan						
RLAN	means Radio Local Access Network and is the high data rate two-way (duplex) wireless data communications network						
SABRE	means South African Band Re-planning Exercise						
SADC	means Southern African Development Community						
SADC FAP	means Southern African Development Community Frequency Allocation Plan 2010						
SAPS	means South African Police Service						
Self Helps	means repeater stations rebroadcasting television channels to limited areas on a low power basis						
Service licence	means a BS, ECS or ECNS licence;						
SF	means Single Frequency						
SFN	means Single Frequency Network						
Ship station	means a mobile station in the maritime mobile service that has been erected						
SNG	means Satellite News Gathering						
Spread spectrum	means a form of wireless communications in which the frequency of the transmitted signal is deliberately varied, resulting in a much greater bandwidth than the signal would have if its frequency were not varied						
SRD	means Short Range Device and is a piece of apparatus which includes a transmitter, and/or a receiver and or parts thereof, used in alarm, telecommand telemetry applications, etc., operating with analogue speech/music or data (analogue and/or digital) or with combined analogue speech/music and data, using any modulation type intended to operate over short distances;						

STL or Studio Links	means point to point links in the broadcasting frequency bands used to connect studios to transmitters					
STB	means Set Top Box for DVB-T2 reception					
T-DAB	means Terrestrial Digital Audio Broadcasting					
TDD	means Time Division Duplex					
ТДМА	means Time Division Multiple Access					
Telemetry	means the transmission of remotely measured data					
TETRA	means Terrestrial Trunked Radio and is a professional mobile radio [2] and two-way transceiver specification. TETRA was specifically designed for use by government agencies, emergency services, (police forces, fire departments, ambulance) for public safety networks, rail transportation staff for train radios, transport services and the military. TETRA is an ETSI standard.					
UE	means user equipment					
UHF	means Ultra High Frequency					
UMTS	means Universal Mobile Telecommunications System is a third generation mobile cellular technology for networks based on the GSM standard					
VHF	means Very High Frequency					
Video Surveillance Equipment	means radio apparatus used for security camera purposes to replace the cable between a camera and a monitor					
VSAT	means Very Small Aperture Terminal and is a two-way satellite ground station that is smaller than 3 metres in diameter					
WAS	means Wireless Access Systems and is end-user radio connections to public or private core networks;					
WBS	means Wireless Business Solutions which is a provider of wireless broadband					
Wideband Wireless Systems	means radio apparatus that uses spread spectrum techniques and has a high bit rate;					
WIMAX	means Worldwide Interoperability for Microwave Access, also known as WirelessMAN which is a wireless broadband standard					
WP 5D	means ITU-R Working Party 5D - IMT Systems					
WRC 07	means World Radio Conference 2007 held in Geneva					
WRC 12	means World Radio Conference 2012 held in Geneva					
WRC 15	means the World Radio Conference held in Geneva 2015					

No. 42021 283

WRC 19 means the World Radio Conference planned to be held in Geneva 2019

A.1 Definitions

A.1.1 ITU Definitions

The standard definitions for spectrum management in the International Telecommunication Union (ITU) Radio regulations (Article 1) are as follows:

allocation (of a frequency band): Entry in the Table of Frequency Allocations of a given frequency band for the purpose of its use by one or more terrestrial or space *radiocommunication services* or the *radio astronomy service* under specified conditions. This term shall also be applied to the frequency band concerned. (1.16);

allotment (of a radio frequency or radio frequency channel): Entry of a designated frequency channel in an agreed plan, adopted by a competent conference, for use by one or more administrations for a terrestrial or space *radiocommunication service* in one or more identified countries or geographical areas and under specified conditions. (1.17); and

assignment (of a radio frequency or radio frequency channel): Authorisation given by an administration for a radio station to use a radio frequency or radio frequency channel under specified conditions. (1.18).

The ITU does not define spectrum migration as such.

In the Act, the reference to spectrum migration is clearly the migration of users of radio frequency spectrum to other radio frequency bands in accordance with the radio frequency plan. The main focus of the "FREQUENCY MIGRATION PLAN" is on migrating existing users.

Since certain issues of spectrum migration involve usage as opposed to users, it is useful to expand the definition of migration to include not just users but also uses. Therefore the Authority's definition of radio frequency migration is:

"Radio Frequency Spectrum Migration" means the movement of users or uses of radio frequency spectrum from their existing radio frequency spectrum location to another.

A.1.2 Spectrum re-farming

The term spectrum re-farming is widely used, but like spectrum migration does not have a universal definition and can mean slightly different things in different countries.

The ICT Regulation Toolkit¹⁹ describes spectrum re-farming:

as a process constituting any basic change in conditions of frequency usage in a given part of radio spectrum (see The ICT Regulation Toolkit)²⁰.

Such basic changes might be:

1. Change of technical conditions for frequency assignments;

2. Change of application (particular radiocommunication system using the band); and

3. Change of allocation to a different radiocommunication service.

The term re-farming is used to describe:

- The process where a GSM operator changes the use of all or part of the spectrum used for GSM to UMTS / LTE; especially where the spectrum licence has specified the technology (as GSM) and the operator licence has to be changed21.
- The situation where the individual assignments within a band are changed to allow more efficient use to be made of the frequency band (usually due to a change in technology).
- The process of reallocating and reassigning frequency bands where the licence period has expired. This is happening in Europe where the original GSM licences are expiring. .For the purposes of the plan therefore, radio frequency spectrum re-farming may be defined as follows:

"Radio Frequency Spectrum Re-farming" means the process by which the use of a Radio Frequency Spectrum band is changed following a change in allocation, this may include a change in the specified technology and does not necessarily mean that the licensed user has to vacate the frequency.

¹⁹This allows spectrum migration to encompass re-farming of spectrum within assigned bands, other technologies and in-band migration such as the digitalisation of TV broadcast.

²⁰ The ICT Regulation Toolkit is a joint production of infoDev and the International Telecommunication Union

²¹ Even where the licences are not technologically-specific and it could be argued that the change in use from GSM to LTE does not require a regulator to get involved; in order to make efficient use of the spectrum it may be necessary to modify the individual assignments within the band.

No. 42021 285

Appendix B – Additional Information 1.427-1.518 GHz

	CEPT	w plan) TR13-01(A)	-			-						-	CEPT	TR13-01(A)			-
	Band	1.4 GHz (F.S)					Band	TR13-04(A) 1.4 GHz (F 5)					Band	1.4 GHz (F.S)			
	Ctr.Freq Ch.Vidth	1433.5 MHz 25 kHz					City Fireq Ph Width	1493.5 Mille 250 kits				_	Ctr.Freq Ch.Vidth	1433.5 MHz 500 kHz			
	Separ.	142 MHz					Separ. Ch.Spac	142 Mitz					Separ.	142 MHz			
	Ch.Spac.	100x25 kHz						15x250 kHz				_	Ch.Spac.	35x500 kHz			
~	Ctr.Gap Go	117 MHz				Ch.	Cu Gip		Ch.		Beturn	Ch.	Ctr.Gap	117 MHz	-		Old plan
Ch.		Return		Go	Return		Go	Return	11111	Go	I 	1	Go	Return	+	40.0	channel n
1	1350.5125 1350.5375	1492.5125	37	1351.4125 1351.4375	1493.4125 1493.4375	73	1352.3125 1352.3375	1494.3125 1494.3375	9	1355.1250	1497.1250	1	1357.2500 1357.7500	1499.2500 1499.7500	+	109 110	
						-	-		10	1355,3750		3			+		
3	1350.5625 1350.5875	1492.5625	39 40	1351.4625 1351.4875	1493.4625	75	1352.3625	1494.3625	11	1355.6250	1497.6250	4	1358.2500 1358.7500	1500.2500 1500.7500	-	111 112	_
•	1350.6125	1432.5015	40	1351.4015	1493.5125	77	1352.3015	1494.4125				-		1501.2500	+	112	
-			-			-			13	1356.1250	1438.1259	5	1359.2500		+		
6	1350.6375	1492.6375	42	1351.5375	1493.5375	78	1352.4375	1494.4375	14	1356,3750	1498,3750	-	1359.7500	1501.7500	+	114	
7	1350.6625	1492.6625	43	1351.5625	1493.5625	79	1352.4625	1494.4625	15	1356.6250	1498.6250	7	1360.2500	1502.2500	+	115	
8	1350.6875	1492.6875	44	1351.5875	1493.5875	80	1352.4875	1494.4875	-			8	1360.7500	1502.7500	+	116	4
9	1350.7125	1492.7125	45	1351.6125	1493.6125	81	1352.5125	1494.5125	<u> </u>			9	1361.2500	1503.2500	┥	117	
10	1350.7375	1492.7375	46	1351.6375	1493.6375	82	1352.5375	1494.5375	-			10	1361.7500	1503.7500	+	116	4
11	1350.7625	1492.7625	47	1351.6625	1493.6625	83	1352.5625	1494.5625	<u> </u>			11	1362.2500	1504.2500	+	119	
12	1350.7875	1492.7875	48	1351.6875	1493.6875	84	1352.5875	1494.5875	<u> </u>			12	1362.7500	1504.7500	+	120	┫
13	1350.8125	1492.8125	49	1351.7125	1493.7125	85	1352.6125	1494.6125	<u> </u>			13	1363.2500	1505.2500	+	121	<u> </u>
14	1350.8375	1492.8375	50	1351.7375	1493.7375	86	1352.6375	1494.6375	-			14	1363.7500	1505.7500	+	122	
15	1350.8625	1492.8625	51	1351.7625	1493.7625	87	1352.6625	1494.6625				15	1364.2500	1506.2500	+	125	
16	1350.8875	1492.8875	52	1351.7875	1493.7875	88	1352.6875	1494.6875				16	1364.7500	1506.7500	-	124	-
17	1350.9125	1492.9125	53	1351.8125	1493.8125	89	1352.7125	1494.7125				17	1365.2500	1507.2500	_	125	
18	1350.9375	1492.9375	54	1351.8375	1493.8375	90	1352.7375	1494.7375				18	1365.7500	1507.7500	4	126	-
19	1350.9625	1492.9625	55	1351.8625	1493.8625	91	1352.7625	1494.7625				19	1366.2500	1508.2500	4	127	
20	1350.9875	1492.9875	56	1351.8875	1493.8875	92	1352.7875	1494.7875				20	1366.7500	1508.7500	_	128	
21	1351.0125	1493.0125	57	1351.9125	1493.9125	93	1352.8125	1494.8125				21	1367.2500	1509.2500	4	129	
22	1351.0375	1493.0375	58	1351.9375	1493.9375	94	1352.8375	1494.8375				22	1367.7500	1509.7500	_	150	
23	1351.0625	1493.0625	59	1351.9625	1493.9625	95	1352.8625	1494.8625				23	1368.2500	1510.2500		151	
24	1351.0875	1493.0875	60	1351.9875	1493.9875	96	1352.8875	1494.8875				24	1368.7500	1510.7500		152	
25	1351.1125	1493.1125	61	1352.0125	1494.0125	97	1352.9125	1494.9125				25	1369.2500	1511.2500		155	ad hoc
26	1351.1375	1493.1375	62	1352.0375	1494.0375	98	1352.9375	1494.9375				26	1369.7500	1511.7500		154	
27	1351.1625	1493.1625	63	1352.0625	1494.0625	99	1352.9625	1494.9625				27	1370.2500	1512.2500		135	ad hoc
28	1351.1875	1493.1875	64	1352.0875	1494.0875	100	1352.9875	1494.9875				28	1370.7500	1512.7500		156	
29	1351.2125	1493.2125	65	1352.1125	1494.1125	1	1353,1250	1495.1250				29	1371.2500	1513.2500		157	ad hoc
30	1351.2375	1493.2375	66	1352.1375	1494.1375	2	1353.3750	1485.3150				30	1371.7500	1513.7500		158	ad hoc
31	1351.2625	1493.2625	67	1352.1625	1494.1625	3	1353,6250	1495.6250				31	1372.2500	1514.2500		159	
32	1351.2875	1493.2875	68	1352.1875	1494.1875	4	1853.8750	1435.8750				32	1372.7500	1514.7500		140	ad hoc
33	1351.3125	1493.3125	69	1352.2125	1494.2125	5	1354.1250	1496.1250				33	1373.2500	1515.2500		141	
34	1351.3375	1493.3375	70	1352.2375	1494.2375	6	1354.3750	1496.3750				34	1373.7500	1515.7500		142	
35	1351.3625	1493.3625	71	1352.2625	1494.2625	7	1354,6250	1496.6250				35	1374.2500	1516.2500	T	145	
36	1351.3875	1493.3875	72	1352.2875	1494.2875	8	1354.8750	1496.8750									
		25 kHz shared						250 kHz share	d					500 kHz shared			
	continue	Annex B	on n	ext shee	t		Typical	users									
	+						Eskom										
	•						Transnet										
							SAPS										
							SANDF		e.,								
							Ekurhule	nı Research F									

No. 42021 287

Annex B (n	ew plan)		
Annex D (in	CEPT TR13-01	(B)	
	Band 1.4 GHz		
	Ctr.Freq 1413.		
	Ch.Width 500		
	Separ. 52 MHz	STAND AND AND A	
	Ch.Spac. 48x50	00 kHz	
	Ctr.Gap 27 MH	z	
Ch.	Go	Return	
1	1375.7500	1427.7500	
2	1376.2500	1428.2500	
3	1376.7500	1428.7500	
4	1377.2500	1429.2500	
5	1377.7500	1429.7500	
6	1378.2500	1430.2500	
7	1378.7500	1430.7500	
8	1379.2500	1431.2500	
9	1379.7500	1431.7500	
10	1380.2500	1432.2500	Telkom
11	1380.7500	1432.7500	
12	1381.2500	1433.2500	Telkom
13	1381.7500	1433.7500	
14	1382.2500	1434.2500	
15	1382.7500	1434.7500	
16	1383.2500	1435.2500	
17	1383.7500	1435.7500	
18	1384.2500	1436.2500	
19	1384.7500	1436.7500	
20	1385.2500	1437.2500	
21	1385.7500	1437.7500	
22	1386.2500	1438.2500	
23	1386.7500	1438.7500	
24	1387.2500	1439.2500	
25	1387.7500	1439.7500	
26	1388.2500	1440.2500	
27	1388.7500	1440.7500	
28	1389,2500	1441,2500	
29	1389.7500	1441.7500	
30	1390.2500	1442.2500	
31	1390.7500	1442.7500	
32	1391.2500	1443.2500	
33	1391.7500	1443.7500	
34	1392.2500	1444.2500	
35	1392.7500	1444.7500	
36	1393.2500	1445.2500	
37	1393.7500	1445.7500	
38	1394.2500	1446.2500	
39	1394.7500	1446.7500	Telkom
40	1395.2500	1447.2500	
41	1395.7500	1447.7500	Telkom
42	1396.2500	1448.2500	Telkom
43	1396.7500	1448.7500	
44	1397.2500	1449.2500	
45	1397.7500	1449.7500	Telkom
45	1398.2500	1450.2500	Telkom
40	1398.7500	1450.2500	Telkom
			T 11
48	1399.2500	1451.2500	Teinon

	ITU / CEPT	Based on RE	C ITU-R F.124	2					
	Band	1.5	i GHz (F.S) Sim	plez					
	Ctr.Freq		-						
	Ch.Vidth	7x500 kHz	& 140x25 kHz						
	Separ.		-						
	Ch.Spac.	7: 5	00 kHz & 140z 2	5 kHz					
	Ctr.Gap		-						
Ch.		Ch.		Ch.		Ch.		Ch.	
1(IMT)	1517.75	37	1521.7375	73	1522.6375	109	1523.5375	145	1524.437
2(IMT)	1518.25	38	1521.7625	74	1522.6625	110	1523.5625	146	1524.462
3	1518.75	39	1521.7875	75	1522.6875	111	1523.5875	147	1524.487
4	1519.25	40	1521.8125	76	1522.7125	112	1523.6125		
5	1519.75	41	1521.8375	77	1522.7375	113	1523.6375		
6	1520.25	42	1521.8625	78	1522.7625	114	1523.6625		
7	1520.75	43	1521.8875	79	1522.7875	115	1523.6875		
8	1521.0125	44	1521.9125	80	1522.8125	116	1523.7125		
9	1521.0375	45	1521.9375	81	1522.8375	117	1523.7375		
10	1521.0625	46	1521.9625	82	1522.8625	118	1523.7625		
11	1521.0875	47	1521.9875	83	1522.8875	119	1523.7875		
12	1521.1125	48	1522.0125	84	1522.9125	120	1523.8125		
13	1521.1375	49	1522.0375	85	1522.9375	121	1523.8375		
14	1521.1625	50	1522.0625	86	1522.9625	122	1523.8625		
15	1521.1875	51	1522.0875	87	1522.9875	123	1523.8875		
16	1521.2125	52	1522.1125	88	1523.0125	124	1523.9125		
17	1521.2375	53	1522.1375	89	1523.0375	125	1523.9375		
18	1521.2625	54	1522.1625	90	1523.0625	126	1523.9625		
19	1521.2875	55	1522.1875	91	1523.0875	127	1523.9875		
20	1521.3125	56	1522.2125	92	1523.1125	128	1524.0125		
							1524.0125		
21	1521.3375	57	1522.2375	93	1523.1375	129			
22	1521.3625	58	1522.2625	94	1523.1625	130 131	1524.0625 1524.0875		
23 24	1521.3875	59 60	1522.2875	95 96	1523.1875 1523.2125	131	1524.0015		
				36 97					
25	1521.4375	61	1522.3375		1523.2375	133	1524.1375		
26	1521.4625	62	1522.3625	98	1523.2625	134	1524.1625		
27	1521.4875	63	1522.3875	99	1523.2875	135	1524.1875		
28	1521.5125	64	1522.4125	100	1523.3125	136	1524.2125		
29	1521.5375	65	1522.4375	101	1523.3375	137	1524.2375		
30	1521.5625	66	1522.4625	102	1523.3625	138	1524.2625		
31	1521.5875	67	1522.4875	103	1523.3875	139	1524.2875		
32	1521.6125	68	1522.5125	104	1523.4125	140	1524.3125		
33	1521.6375	69	1522.5375	105	1523.4375	141	1524.3375		
34	1521.6625	70	1522.5625	106	1523.4625	142	1524.3625		
35	1521.6875	71	1522.5875	107	1523.4875	143	1524.3875		
36	1521.7125	72	1522.6125	108	1523.5125	144	1524.4125		

No. 42021 289

Appendix C – Additional information on 24.25-27.5 GHz

290	No.	42021

		TE#SZ	⁸ снзз	obeu		22473	CHIE	M etrofibre consideration	Gauteng		56439	²⁸ CH35	uədo		57297	снте	M etrofibre consideration
_		52403	рана стала ста Стала стала ста Стала стала ста	uədo			51115	Me	ö		11492	⁸ снзт	uədo			51115	Me
			28	Ad hoc Internet Sol								58	Ad hoc Internet Sol				
		52852	СНЗО	Ad Inte		T9ESZ	STHO 2		5		88892	СНЗО	ad Inte		69597	STH2	5
		25547	67Н2	uədo	Dark Fibre conside		11115	Dark Fibre	onside		55892	8 67Н2	uədo	Dark Fibre consider	05050	11115	Dark Fibre consider
				Liquad (Neotel) noizneqxə	Ĭ								(lətoəV)biupiJ noizneqxə				
		52319	82Н2	indicated possible		50852	y				72592	82НО	ndicated possible		67607	CH14	
		16ZSZ	27H3	Neotel		30230	VINJ				66797	27H2	Neotel		21290	VINJ	
				a letoeN P									a letoeN To Meoter				
		£9757	92Н2	ਤਿ			<u>y</u>				17292	оснзе	- B			<mark>2</mark>	
		58252	SZH2	, Joburg Neotel		55249	CH13				26243	SZH2	D bn, Joburg Meotel Istosia		25292	снтз	
				Dbh		_					_						
		20252	CH24	Neotel							STZ9Z	CH24	Neotel			95	
		62152	EZHO 8	Neotel A		£615Z	СН12				28192	<mark>ஜ</mark>	Neotel R		10292	снт2	
															_		
		TSTSZ	CH22		-						65192	CH22		-			
		EZISZ	1742 8	Aodac dd ho Cymraedd yr	h tur	28192	СНТТ			\square	16192	<mark>8</mark>	Vodac ad ho	hế TUT	59192	ттно "	
			- CHU						\vdash	\vdash	10192	- CHJ			-		
		\$60\$Z	⁸ снзо	Лодас 🖁							£019Z	сн20	Vodac At				
		10057	<mark>8</mark>	Vodac at		1805Z	отно "	`			C / 007	- <u></u> 8	Vodac Ra		68097	СНТО	
		29052	61HJ			_					S209Z	61HJ			_		
		68052	⁸ СН78	ити ^д							76047	⁸ снт8	ити В				
			<mark>8</mark>	MTN At		\$2052	60НО					<mark>8</mark>	MTN A		86033	60НО 0	
		TTOSZ									61092						
		24983	⁸ снте	uədo				of ibre eration	Gaute ng		1665Z	⁸⁷ СНТЕ	uədo			25	M etrofibre onsideration
		55672		uədo		54969	80H2	M etrofibre consideration	Gau		60667		uədo		22652	80НО 0	M etrofibre consideration
		33075	STHU		x = 8				der		£965Z	31113		x = 5			
asis		72642	ртно 🕺	uədo	Dark Fibre consider		y	Dark Fibre	consi		5865Z	CH14	uədo	Dark Fibre conside		19	Dark Fibre consider
primary basi		54899	STH2	Nat Multisou rce (WBS)		24913	20НЭ				20652	<mark>ж</mark>	Nat Multisou rce (WBS)		TZ6SZ	20НО	
orima		00070	C MIS			_					20030	cons					
uof		17842	8 снт	A Transnet							62852	8 снт2	Ad ho Transnet				
arinç		54843	8	Telkom Ad hoc		724857	90НО				TS85Z		Telkom Ad hoc		\$9852	90НО	
are sharing on			t thy			_					1331	THI			_		
		51842	⁸ снто	Telkom							£2852	8 снто	теікот.				
esea		78742	60H2 8	Telkom		10842	сног			\square	9 56252	60H2	Telkom		60852	SOHO	
œّ			50.15							ŀŀ	ä	30.13					
ő			8								79722	80НЭ	Telkom ⁶ X				
Space		65742	80HD	<u>}</u>							Ē		Telkom G		85753	CH04	
and Space				Telkom Country		24745	*0H2				0 65/57		0 monitor				
arth) and Space		54759 15742		Telkom country w		54745	CH04			Η.	sere similar to	<mark>8</mark> 20НЭ	yments c		-		
-to Earth) and Space			<mark>8</mark> сно	de plo Telkom country Telkom co		54745	CH04				52239 682 50 112257		Telkom c Telkom c				
pace-to Earth) and Space		54731 24703	⁸ сно 2 сно 2 сно е	yments		5772 68322		2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				осное	yments		26957	Ring CH03	
ite (space-to Earth) and Space		16742	⁸ сно 2 сно 2 сно е								01 return 525211	осное			2695Z	8	
satellite (space-to Earth) and Space		54731 24703	[%] сно2 % сно2 % сное								01 return 525211	³⁸ сное ³⁸ сное	Telkom Telkom Telkom Telkom		269SZ	Q CH03	
tion-Satellite (space-to Earth) and Space lan		54237 54203 54675 24647	³⁸ сноз 38 сное 38 сное 38 сное 88 сноч				сноз				01 return 525211	⁸⁸ сное ⁵⁸ сное ⁸⁸ сное				<mark>8 сноз</mark>	
oloration-Satellite (space-to Earth) and Space mel plan		57675	³⁸ сноз 38 сное 38 сное 38 сное 88 сноч	Telkom Telkom		68952	сноз				01 return 525211	⁸⁸ сное ⁵⁸ сное ⁸⁸ сное	Telkom				
h Exploration-Satellite (space-to Earth) and Space channel plan		54237 54203 54675 24647	28 СНО2 СНО2 СНО2 СНО2 СНО2 СНО3 СНО3 СНО3 СНО3 СНО3 СНО3 СНО3 СНО3	Telkom Telkom Telkom		68952	сноз				01 return 525211	³⁸ сное ³⁸ сное ³⁸ сноз ³⁸ сноз	Telkom Telkom				
Note: Earth Exploration-Satellite (space-to Earth) and Space Research Terrestrial channel olan	Go."Leg"	1£2452 20252 22952 25955 61952	38 CH0.1 58 CH0.2 58 CH0.2 58 CH0.2 58 CH0.2 58 CH0.3 58 CH0.3 58 CH0.3 58 CH0.3	Telkom Telkom		68952	CH03				22211 22211 22221 22283 2228 22283 22285 22283 22285 22285 22285 22285 22285 22285 22285 22285 22285 22285 22285 22285 22285 22285 22285 2205 220	²⁸ сног ²⁸ сног ²⁸ сног ²⁸ сног ²⁸ сног ²⁸ сног	Telkom			29 <u>СНОЗ</u>	

No. 42021 291

Appendix D Additional information for 37-40.5 GHz

CITE OF C	BAND	Chr.FKEQ	Senar.	Ch.Spac.	Ctr. Gap	Ċ	22	91	u	81	19	80																ļ															
		14 MH7	71111	14 MHz		Return	39361.0000	39375.0000	39389.0000	39403.0000	39417.0000	39431.0000																															
ر		14 MH7	7	14 MHz		Go	38101.0000	38115.0000	38129.0000	38143.0000	38157.0000	38171.0000																															
						ť	75	76	11	78	79	80																Τ	Τ		Τ												ſ
د		14 MH7	71111	14 MHz		Return	38843.0000	38857.0000	38871.0000	38885.0000	38839.0000	38913.0000	38927.0000	38941.0000	38955.0000	38969.0000	38383.0000	38997.0000	39011.0000	39025.0000	33033.0000	33053.0000	33067.0000	33081.0000	33035.0000	33103.0000	39123.0000	39137.0000	39151.0000	39165.0000	39179.0000	39193.0000	33207.0000	33221.0000	39235.0000	39249.0000	39263.0000	39277.0000	33231.0000	39305.0000	33319.0000	39333.0000	
-11-24-1-1	38 GHZ	38248.000 14 MH7	1260 MHz	14 MHz	140 MHz	go	37583.0000	37597.0000	37611.0000	37625.0000	37639.0000	37653.0000	37667.0000	37681.0000	37695.0000	37709.0000	37723.0000	37737.0000	37751.0000	37765.0000	37779.0000	37793.0000	37807.0000	37821.0000	37835.0000	37849.0000	37863.0000	37877.0000	37891.0000	37905.0000	37919.0000	37933.0000	37947.0000	37961.0000	37975.0000	37989.0000	38003.0000	38017.0000	38031.0000	38045.0000	38059.0000	38073.0000	
						ť	38	39	9	ŧ	42	\$ 3	\$	45	46	14	48	43	50	51	52	53	54	55	56	57	58	53	60	61	62	63	5	65	66	67	68	63	2	۲	72	73	
		14 MH7		14 MHz		Return	38325.0000	38339.0000	38353.0000	38367.0000	38381.0000	38395.0000	38409.0000	38423.0000	38437.0000	38451.0000	38465.0000	38479.0000	38433.0000	38507.0000	38521.0000	38535.0000	38549.0000	38563.0000	38577.0000	38591.0000	38605.0000	38619.0000	38633.0000	38647.0000	38661.0000	38675.0000	38689.0000	38703.0000	38717.0000	38731.0000	38745.0000	38759.0000	38773.0000	38787.0000	38801.0000	38815.0000	
,		14 MH7	7	14 MHz		Go	37065.0000	37079.0000	37093.0000	37107.0000	37121.0000	37135.0000	37149.0000	37163.0000	37177.0000	37191.0000	37205.0000	37219.0000	37233.0000	37247.0000	37261.0000	37275.0000	37289.0000	37303.0000	37317.0000	37331.0000	37345.0000	37359.0000	37373.0000	37387.0000	37401.0000	37415.0000	37423.0000	37443.0000	37457.0000	37471.0000	37485.0000	37433.0000	37513.0000	37527.0000	37541.0000	37555.0000	
						Ś	-	2	3		5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	
		28 MH7	7111107	28 MHz	I	Return	39368.0000	33336.0000	39424.0000																																		
		28 MH7	71111 07	28 MHz		60	38108.0000	38136.0000	38164.0000																																		
						Ś	38	39	•																																		ĺ
1-04-01	38 GHZ	38248.000 28 MH7	1260 MHz	28 MHz	140 MHz	Return	38332.0000	38360.0000	38388.0000	38416.0000	38444.0000	38472.0000	38500.0000	38528.0000	38556.0000	38584.0000	38612.0000	38640.0000	38668.0000	38696.0000	38724.0000	38752.0000	38780.0000	38808.0000	38836.0000	38864.0000	38892.0000	38920.0000	38948.0000	38976.0000	33004.0000	39032.0000	33060.0000	33088.0000	39116.0000	39144.0000	39172.0000	39200.0000	39228.0000	39256.0000	33284.0000	39312.0000	
		28 MH7	71111 07	28 MHz		g	37072.0000	37100.0000	37128.0000	37156.0000	37184.0000	37212.0000	37240.0000	37268.0000	37296.0000	37324.0000	37352.0000	37380.0000	37408.0000	37436.0000	37464.0000	37432.0000	37520.0000	37548.0000	37576.0000	37604.0000	37632.0000	37660.0000	37688.0000	37716.0000	37744.0000	37772.0000	37800.0000	37828.0000	37856.0000	37884.0000	37912.0000	37940.0000	37968.0000	37996.0000	38024.0000	38052.0000	-
						Ś	-	2	3	•	5	9	2	8	6	10	=	12	13	14	15	16	11	18	13	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	
		56 MH7		56 MHz		Return	38346.0000	38402.0000	38458.0000	38514.0000	38570.0000	38626.0000	38682.0000	38738.0000	38734.0000	38850.0000	38906.0000	38962.0000	33018.0000	33074.0000	33130.0000	39186.0000	33242.0000	39298.0000	33354.0000	33410.0000																	
z		56 MH7		56 MHz		Go	37086.0000	37142.0000	37198.0000	37254.0000	37310.0000	37366.0000	37422.0000	37478.0000	37534.0000	37590.0000	37646.0000	37702.0000	37758.0000	37814.0000	37870.0000	37326.0000	37382.0000	38038.0000	38034.0000	38150.0000																	
L-49-1	BAND	Ctr.FKEQ Ch.Width	Senar.	Ch.Spac.	Ctr. Gap	ċ	-	2	3	-	5	9	7	8	9	10	Ħ	12	13	14	15	16	17	18	13	20				l													

Page 139/183

292 No. 42021

No. 42021 293

F.749-1					F.749-1						F.749-1				F.749-1
BAND	D			D	38 GHz		D			D	38 GHz		D		BAND
Ctr.FREQ	0.027.0				38248.000						38248.000				Ctr.FREQ
Ch.Width	7 MHz	7 MHz		7 MHz	7 MHz		7 MHz	7 MHz		7 MHz	7 MHz		7 MHz	7 MHz	Ch.Width
Separ.	Distribute-				1260 MHz						1260 MHz			17 M 1854	Separ.
Ch.Spac.	7 MHz	7 MHz		7 MHz	7 MHz		7 MHz	7 MHz		7 MHz	7 MHz		7 MHz	7 MHz	Ch.Spac
Ctr. Gap					140 MHz						140 MHz				Ctr. Gap
Ch.	Go	Return	Ch.	Go	Return	Ch.	Go	Beturn	Ch.	Go	Return	Ch.	Go	Fletsrn	Ch
1	37061.5000	38321.5000	38	31320.5000	38589 5899	15	37579.5000	38433.5000	112	31858.5000	33038.5000	14.5	34091.5000	35357.5000	143
2	37068.5080	38328.5000	33	31321,5000	38587,5000	76	37585.5008	38845.5000	113	37845.5000	33105,5000	150	38184.5899	33354.5000	150
0	37075.5000	38335.5000	40	31534.5000	38594.5000	π	57555.5000	38453.5000	154	31852.5000	35112.5000	151	38111.5000	35371.5000	151
	31082 5080	38242 5000		37341 5000	38601.5000	28	37600.5000	28868.5000	105	37853.5000	32113.5600	152	38118.5000	39376.5000	152
5	31083.5000	38349.5000	42	31346.5000	38608.5000	75	31601.5000	38867.5000	116	31866.5000	35126.5000	153	38125.5000	39385.5000	153
	37936.5000	38356.5000	43	27355.5000	34615.5000		37614.5000	38874.5000	117	37873.5000	33133.5000	154	30122 5000	33332.5900	154
1	3/103.5000	38363.5000	44	31362.3000	38622 5000	81	37621.5000	38881,5000	118	31880,5000	33140,5800	155	38133.5000	39399,5000	155
	37199.5000	30370 1000	45	37363.5088	30623 5000	\$2	97628.5090	38688.5008	113	37667.5000	33147.5000	156	38146.5000	35466.5000	156
	37117.5000	38317.5000	48	31316,5000	38636.5000	83	31633.3000	38835.5000	120	37834.5000	33154,5000	BT	38153,3000	35413.5000	BT
10	37124.5000	38364,5000	47	37303.5000	30642 5000	84	37642.5000	38302.5000	121	37301.5000	39161.5000	150	30160.5000	39429.5000	150
	37131,5000	38331,5080	48	A CONTRACTORY	38650,5000	85		38303,5000	122	and a second second		153	38167,5000	33427,3000	158
	and the second second second			31330,5000	STATISTICS STATISTICS	-	37648.3000	and the first state of		31308,3000	33168,5000				
12	37128.5000	38336.5000	43	37381,5000	and set in the set of the set	86	32656.5000	38396.5000	123	37915.5000	39115.5000	96.0	20174.5000	33434.5000	160
13	37145.5000	38485.5000	50	37404.5000	38664.5800	87	37663.5000	\$8323.5000	124	31322.5000	33182.5000	-			
н	37652.5000	38412,5000	51	37411.5000	36611.5000	- 44	97670.5000	38338.5000	625	37525.5000	33183.5000	-			
15	37153.5000	38413.5080	52	37418.5000	38678.5800	83	37677.5000	38337,5000	126	37336.5008	33136.5000				
16	3786.5000	36426.5000	53	51425.5089	38645.5890	24	37684.5000	38344.5000	827	37343.5000	35203.5000	-		1	
18	37173,5000	38433,5000	54	31432.5000	38652.5999	31	37631.5000	38351,5000	128	31350.5000	33210.5000				
18	32160.5000	36440.5000	55	37433.5000	38655.5000	52	37658.5000	38358.5008	123	37351.5000	39217.5000				
19	37587.5000	38447.5990	56	37446.5000	38706.3490	83	37705.5000	38365,5000	130	37364.5000	23224.5000	1			
20	37154.5000	36454.5000	57	31453.5000	38115.5008	54	37712.5008	38512.5000	131	51511.5000	38231.5000			1	
21	37201.5000	28461.5080	58	37460.5080	36228.5000	35	37713.5000	28373,5000	132	37378.5900	39238.5999			2	
22	37208.5066	38468.5000	59	31467.5000	36727.5000	36	31126.3000	38366.5000	133	37385.5000	38245.5000			÷	
53	32215.5000	28435.5000	60	37474.5000	38724.5899	37	37733.5009	38333.5000	134	37332.5000	33252.5000	1.1			
24	31222.5000	38482.5600	61	37481.5000	38141.5000	58	31140.5000	39000.5000	135	31933.5000	38258.5000				
25	37229.5080	36483.5000	68	37488.5889	30748.5000	.99	37747.5000	39907.5000	136	38406.5000	33266.5000			1	
26	31238.5000	38436.5000	63	31435.5000	38153.5008	100	37754.5000	33014.5000	151	38013.5000	33273.3000	-			
21	37243.5000	38503 5080	64	37502.5000	38762 5800	901	37761.5000	33021.5000	130	50020.5000	39200.5000			1	
28	37250.5000	38510,5000	65	31503.5000	38765.5000	102	31168,3000	\$3628.5000	138	38027.5000	33287.5000				
23	37257.5000	30517.5000	66	37516-5000	36776.5000	102	37775.5000	33035.5000	140	30034.5000	33234.5000				
30	37264,5000	38524.5000	67	31523.5000	38783.5000	104	37182.5000	39042.5000	141	38841.5000	33301,5000				
21	37271.5000	58531.5000	60	31530.5000	30750.5000	105	37169.5000	33043.5000	142	38048,5000	33308.5988	-		2	
32	37278,5000	38538.3000	63	27537.5000	38797 5008	106	32736.5000	33056.5000	143	38055,5000	33315.5000				-
22	37285,5900	34545.5000	10	31544.5000	30004.5000	107	57603.5800	39063.5000	144	38462.5000	33322 5000			-	
34	37232.5080	38552.3080	21	37551,5000	38811.5000	108	37810,5000	23979.5000	145	38963,3000	33323,5000	-			
35	37235.5000	34555.5000	12	37558,5000	56816.5000	105	37617.5000	33077.5000	146	38076.5000	35356.5000	-		-	
36	37386 5000	38566.5880	12	37565.5000	38825.5800	105	37824,5000	33664,5000	141	38083,5000	13342.5000	-	-		
				Transferrance	1000000000	-			-			-	-		
H	31313.5000	54573.5000	34	37572.5000	38832.5898	101	37631.5000	33051.5000	148	38830.5000	39350.5000	-			

1-247-1	BAND	Ctr.FREQ	Ch.Width	Ch Enac	Ctr. Gap	CP.	297	238		233	300	301	302	303	304	305	306	307	308	303	310	311	312	313	314	315	316	317	316	319	320													
			3.5 MHz	2 K MH-	71101 010	Return	33355.7500	33353.2500		33362.7500	33366.2500	33369.7500	33373.2500	33376.7500	33388.2500	33383.7500	33387.2500	33330.7500	33394.2500	33337.7500	33401.2500	33404.7500	33408.2500	39411.7500	33415.2500	33418.7500	39422.2500	33425,7500	33423.2500	33432.7500	33436.2500													
	w		3.5 MHz	2 6 MH-	7	Go	38095.7500	38033.2500		38102.7500	36106.2500 3	38109.7500	36113.2500	38116.7500	38120.2500 3	38123.7500	36127.2500	38130.7500	38134.2500 3	38137.7500	30141.2500	38144.7500	30148.2500 3	38151.7500	36155.2500	38158.7500	36162.2500 3	38165.7500	38163.2500 3	38172.7500	38176.2500 3													-
			3			5	297 38	236 30		295 38	300 38	301 38	302 30	303 34	304 38	305 38	306 36	307 38	308 38	309 38	310 30	311 38	312 30	313 36	314 30	315 38	316 38	317 38	316 36	313 38	320 38	Т	Т	Т	Т	T							1	r
			3.5 MHz	2 C MH-	71111 0-0	Return	33226.2500	33229.7500	_	33233.2590	33236.7500	33240.2500	33243.7500	39247.2500	33250.7500	33254.2500	33257.7500	33261,2500	33264.7500	33268.2500	33271.7500	33275.2500	33278.7500	33282.2500	33265.7500	33289.2500	33232.1500	33236.2500	33239.7500	33303.2500	33306.7500	33310.2500	33313.7500	33317.2500	33320.7500	33324.2500	35327.7500	39331,2500	33334.7500	33338.2500	33341.7500	33345.2500	33348.7500	the state
	w		3.5 MHz	2 6 MH-	7000 0-0	Go	37366.2500 3			37373.2500 3	37376.7500 3	37380.2500 3	37363.7500 3	37387.2500 3	37390.7500 3	37394.2500 3	37397.7500	38001.2500 3	38004.7500 3	38008.2500 3	36011.7500	38015.2500 3	36016.7500 3	38022.2500 3	38025.7500 3	38023.2500 3	38032.7500 3	38036.2500 3	36033.1500	38043.2500 3	38046.7500 3	38050.2500 3	38053.7500	and the last	38060.7500	38064.2500 3	38067.7500 3	38071.2500 3	38074.7500 3	38078.2500 3	38081.7500	38085.2500 3	38988.7500 3	
						đ	260 3	261 3		262 3	263 3	264 3	265 3	266 3	267 3	268 3	263 3	270 3	271 3	272 3	273 3	274 3	275 3	276 3	211 3	278 3	273 3	280 3	281 3	282 3	283 3	284 3	285 3	286 3	287 3	288 3	203 3	290 3	231 3	232 3	293 3	294 3	295 3	-
1-247-1	38 GHz	38248.000	3.5 MHz	1260 MHz	140 MHz	Return	33036.7500	33100.2500		39103.7500	33107.2500	39110.7500	33114.2500	33117.7500	33121.2500	33124.7500	33128.2500	33131.7500	33135.2500	39138.7500	33142.2500	39145.7500	33143.2500	33152.7500	33156.2500	33153.7500	33163.2500	33166.7500	33170.2500	39173.7500	33177.2500	33180.7500	33184.2500	33187,7500	33131.2500	33134.7500	33136.2500	39201.7500	33205.2500	33208.7500	33212.2500	33215.7500	33213.2500	
	w		3.5 MHz	2 6 MH-	71141 0-0	Go	37836.7500	37840.2500		37843.7500	37847.2500	37850.7500	37854.2500	37857.7500	37861.2500	37864.7500	37868.2500	37871.7500	37875.2500	37878.7500	37862.2500	37885.7500	37563.2500	37832.7500	37836.2500	37899.7500	37303.2500	37306.7500	37310.2500	37313.7500	37317.2500	37320.7500	37324.2500	37327.7500	37331.2500	37334.7500	37338.2500	37941.7500	37345.2500	37348.7500	37952.2560	37355,7500	37353.2500	
						сb	223	224		225	226	227	226	229	230	231	232	233	234	235	236	237	238	233	240	241	242	243	244	245	246	247	248	243	250	251	252	253	254	255	256	257	258	1
			3.5 MHz	2 K ANH 7	711111 0-0	Return	38367.2500	38370.7500		38314.2500	38377.7500	38981.2500	38384.7509	38388.2500	38391.7500	38335.2500	38338.7500	39002.2500	33005.7500	33003.2500	33012.7500	39016.2500	33013.7500	33023.2500	33026.1500	33030,2500	33033.7500	33037.2500	33040.1500	33044.2500	33047.7500	33051.2500	33054.7500	33058.2500	33061.7500	33065.2500	33068.7500	33072.2500	33075.7500	33073.2500	33082.7500	33086.2500	33083.1500	
	w		3.5 MHz	1 K MH-	71111 010	Go	37707.2500	37710.7500		37714.2500	37717.7500	37721.2500	37724.7500	37728.2500	37731.7500	37735.2500	37738.7500	37742.2500	37745.7500	37749.2500	31752.7500	37756.2500	31153.1500	37763.2500	31766.7500	37770.2500	37773.7500	37777.2500	31780.7500	37784.2500	37767.7500	37731,2500	31734.7500	31738.2500	37801.7500	37805,2500	37808.7500	37812.2500	37815.7500	37813.2500	37822.7500	37826.2500	37823.7500	
						Ch.	186 3	187 3		188	185	3	191 3	192 31	133 3	194 3	135 3	196 31	197 3	198 31	133 3	200 3	201 3	202 31	203 3	204 3	205 3	206 3	207 3	208 33	203	210 3	211	212 31	213 3	214 31	215 31	216 3	217 3	218 3	213 31	220 31	221 31	
			3.5 MHz	2.6 MHT	711111 010	Return (-	38841.2500	t	38844.7500	38848.2500	38851.7500 1	38855,2500	38858.7500	38862.2508	38865.7500	38653.2500	38872.7500	30876.2500	38873.7500	30803.2500	38886.7500 2	38590.2500 2	38893.7500 2	38591.2500 2	38300.7500 2	38304.2500 2	38307.7500 2	30311.2500 2	38914.7500 2	30316.2500 2	38321.7500 2	30325.2500	-	38332.2500 2	38935.7500 2	38333.2500 2	38342.7500 2	38346.2500 2	38343.7500 2	36353.2500 2	38356.7500 2	38360.2500 2	
	E C		3.5 MHz	A RAH-		Go	37577,7500 38	37501.2500 34	-	37584.7500 38	37588.2500 30	37591.7500 34	37535.2500 30	37598.7500 34	37602.2500 30	37605.7500 38	37603.2500 38	37612.7500 38	37616.2500 30	37619.7500 36	37623.2500 30	37626.7500 38	37630.2500 30	37633.7500 38	37631.2500 30	37640,7500 38	37644.2500 38	37647.7500 36	37651.2500 34	37654.7500 34	37658.2509 30	37661.7500 34	37665.2500 30		37672.2500 38	37675.7500 38	37673.2500 38	37682.7500 38	37666.2500 38	37683.7500 38	37633.2500 30	37636.7500 38	37700.2500 38	
			ri	8	5	Ch	14.9 37	150 37	-	151 37	152 375	153 37	154 373	155 375	156 376	157 370	158 376	159 370	160 370	161 370	162 370	163 376	164 370	165 376	166 376	167 376	16.8 376	163 376	110 370	111 37	172 376	173 370	114 376	175 376	176 376	177 376	176 376	179 376	180 376	181 376	182 376	183 376	184 371	1
			3.5 MHz	2 K MH-	71111 010	Return	38708.2500	38711.7500	-	38715.2500	38718.7500	38722.2500	38725.7500	38729.2500	38732.7500	38736.2500	38739.7500	38743.2500	38746.7500	38750.2500	30753.7500	38757.2500 1	38760.7500	38764.2500	38767.7500	38771.2500	38714.7500	38778.2500	38781.7500	38785.2500	38768.7500	38732.2500 1	38735.7500	_	38602.7500	38806.2500	38803.7500	38813.2500	38816.7500 1	38820.2500	38823.7500	38827.2500 1	38830.7500 1	
	w		3.5 MHz	1 K MH-		Go	37448.2500 3	37451.7500 3		31455.2500 3	37458.7500 3	37462.2500 3	37465.7500 3	37469.2500 3	37472.7500 3	37476.2500 3	37473.7500 3	37483.2500 3	37486.7500 3	374.90.2500 3	37433.7500 3	374.97.2500 3	37500.7500 3	37504.2500 3	\$1501.1500 3	37511.2500 3	37514.7500 3	37518.2500 3:	37521.7500 3	1525.2500 3	37528.7500 3	37532.2500 3	37535.7500 3		31542.1500 31	37546.2500 34	37543.7500 3	37553.2500 3	37556.7500 3	37560.2500 34	37563.7500 3	37567.2500 3	37570.7500 3	
						сŀ	112 31	1	1	1	1	116 31	117 3	118 31	113 3	120 31	121 3	122 31	123 31	124 31	125 31	126 31	127 3	128 31	123 3	130 3	131 3	132 3	133 3	134 3	135	136 31	137 3	138 31	133	140	-	142 3	143	144 31	145 3	146 3	147 3	
1-84/14	38 GHz	38248.000	3.5 MHz	1260 MH2	140 MHz	Return	38578.7500	36562.2500		38585.7500	38589.2500	38592.7500	38536.2500	38539.7500	38603.2500	38606.7500	38610.2500	38613.7500	38617.2500	38620.7500	38624.2500	38627.7500	386312500	38634.7500	38638.2500	38641.7500	38645.2500	38648.7500	36652.2500	38655.7500	38653.2500	38662.7500	38666.2500	38669.7500	38673.2500	38676.7500	38680.2500	38683.7500	38687.2500	38630.7500	38634.2500	38637.7500	38701.2500	
	w		3.5 MHz	1 C MH-	71111 010	Go	37318.7500	37322.2500	1000	31325.7500	37329.2500	37332.7500	37336.2500	37339.7500	37343.2500	37346.7500	37350.2500	37353.7500	31357.2500	37360.7500	37364.2500	37367.7500	37371.2500	37374.7500	37376.2500	37381.7500	37385.2500	37388.7500	37332.2509	37335.7500	37333.2500	37402.7500	37406.2500		37413.2500	37416.7500	37420.2500	37423.7500	31427.2500	37430.7500	37434.2500	37437.7500	37441.2500	
						б	22	26		=	82	61	80	81	82	83	84	85	96	87	99	89	90	16	32	93	34	35	96	37	98	33	100	101	102	103	104	105	106	107	108	103	110	1
			3.5 MHz	2 K MH-		Return	38449.2500	38452.7500		38456.2500	38453.7500	38463.2500	36466.7509	38470.2500	38473.7500	38477.2500	36480.7500	38484.2500	38487.7500	38431.2500	38434.7500	38438.2500	36501.7500	38505.2500	38508.7500	38512.2500	38515.7500	38519.2500	38522.7500	38526.2500	38529.7500	38533.2500	36536.7500		38543.7500	38547.2500	38550.7500	38554,2500	38557.7500	38561.2500	38564.7500	38568.2500	38571.7500	
	ų		3.5 MHz	2 K MH-		Go	37183.2500	37152.7500		37196.2500	37133.7500	37203.2500	37206.7500	37210.2500	37213.7500	37217.2500	37220.7500	37224.2500	43 37227.7500	37231.2500	37234.7500	37238.2500	37241.7500	37245.2500	37248.7500	37252.2500	37255.7500	37259.2500	37262.7500	37266.2500	37263.7500	37273.2500	37276.7500		37263.7500	37287.2500	37230.7500	37294.2500	37237.7500	37301.2500	37304.7500	37308.2500	37311.7500	
			Z		4	ő	00 38	33		40	11 005	100 42	69 43	11 00	500 45	100 45	14 00	100 48	_	00 50	10 51	52	22	00 54	200	00 56	500 ST	58	500 53	09 00	19 005	500 62	63	00 64	59	99 00	19 00	68 00	500 63	01 00	11 00	12 00	500 73	
			z 3.5 MHz	CHAN 2 & AAH-		Return	00 38319.7500	37063.2500 38323.2500		37066.7500 38326.7500	37070.2500 38330.2500	00 38333.7500	00 38337.2500	00 38340.7500	00 36344.2509	00 38347.7500	00 38351.2500	00 38354.7500	00 38358.2500	38361.7500	00 30365.2500	90 38368.7500	00 38372.2500	00 38375.7500	00 38373.2500	00 38382.7500	00 36366.2500	90 38389.7500	00 36393.2500	00 38396.7500	00 38400.2500	38403.7500	38407.2500		00 38414.2500	38417.7500	90 38421.2500	00 38424.7500	00 38428.2500	38431.7500	00 38435.2500	00 38438.7500	00 38442.2500	
			3.5 MHz	2 6 MHY	22	Go	37059.7500	37063.256		37066.75	37070.25	37073.7500	37077.2500	37080.7500	37084.2500	37087.7500	37031.2500	37034.7500	37036.2500	37101.7500	37105.2500	37108.7500	37112.2500	37115.7500	37113-2500	37122.7500	37126.2500	37129.7500	37133.2500	37136.7500	37140.2500	37143.7500	37147.2500	37150.7500	37154.2500	37157.7500	37161.2500	37164.7500	37168.2500	37171.7500	37175.2500	37178.7500	37182.2500	-
CURVITU-K	BAND	Ctr.FREQ	Ch.Width	Ch Snac	Ctr. Gap	Ch.	-	~		~	-	5	9	~		8	10	=	21	13	*	¥	2	F	12	13	20	5	22	53	54	52	26	51	28	53	30	31	32	33	15	35	36	

Page 141/183

294 No. 42021

No. 42021 295

Appendix E Additional Information 40.5-42.5 GHz

Sub	-band A			Sub	-band B	
F ref (MHz)	42000			F ref (MHz)	42000	
Ctr.Freq (MHz)	42000			Ctr.Freq (MHz)	42000	
Separ.	1500 MHz			Separ.	1500 MHz	
Ch.Spac.	112 MHz			Ch.Spac.	56 MHz	
Ctr. Gap	156 MHz			Ctr. Gap	100 MHz	
СН	GO	RETURN		CH	GO	RETUR
1	40606	42106	¥C national	1	40578	42078
2	40718	42218	¥C national 🛛 🗸	2	40634	42134
3	40830	42330	space for possible	3	40690	42190
4	40942	42442	expansion or sharing	4	40746	42246
5	41054	42554	Liquid Tel national 🕈	5	40802	42302
6	41166	42666	Liquid Tel national	6	40858	42358
7	41278	42778		7	40914	42414
8	41390	42890		8	40970	42470
9	41502	43002		9	41026	42526
10	41614	43114		10	41082	42582
11	41726	43226		11	41138	42638
12	41838	43338		12	41194	42694
				13	41250	42750
				14	41306	42806
				15	41362	42862
				16	41418	42918
				17	41474	42974
				18	41530	43030
				19	41586	43086
				20	41642	43142
				21	41698	43198
				22	41754	43254
				23	41810	43310
				24	41866	43366
				25	41922	43422

No. 42021 297

Sub	-band C					
F ref (MHz)	42000					
Ctr.Freq (MHz)	42000					
Separ.	1500 MHz					
Ch.Spac.	28 MHz					
Ctr. Gap	100 MHz					
СН	GO	RETURN		СН	GO	RETURN
1	40564	42064	1	26	41264	42764
2	40592	42092	1	27	41292	42792
3	40620	42120	/	28	41320	42820
4	40648	42148	/	29	41348	42848
5	40676	42176	1	30	41376	42876
6	40704	42204	<i>i</i>	31	41404	42904
7	40732	42232		32	41432	42932
8	40760	42260	/	33	41460	42960
9	40788	42288	1	34	41488	42988
10	40816	42316	1	35	41516	43016
11	40844	42344	i i	36	41544	43044
12	40872	42372		37	41572	43072
13	40900	42400		38	41600	43100
14	40928	42428		39	41628	43128
15	40956	42456	1	40	41656	43156
16	40984	42484	1	41	41684	43184
17	41012	42512	1	42	41712	43212
18	41040	42540		43	41740	43240
19	41068	42568		44	41768	43268
20	41096	42596	1	45	41796	43296
21	41124	42624	1	46	41824	43324
22	41152	42652		47	41852	43352
23	41180	42680		48	41880	43380
24	41208	42708		49	41908	43408
25	41236	42736	1	50	41936	43436

T												
					_							
									_			
	-	CH	GO	RETURN	4	CH	GO	RETURN	-	СН	60	RETURN
		31	40977	42477	-	61	41397	42897		91	41817	43317
		32	40991	42491		62	41411	42911		92	41831	43331
		33	41005	42505	_	63	41425	42925	_	60	41845	43345
		34	41019	42519		64	41439	42939	-	94	41859	43359
		35	41033	42533		<mark>65</mark>	41453	42953		36	41873	43373
	-	36	41047	42547		99	41467	42967		96	41887	43387
		37	41061	42561	_	67	41481	42981	_	16	41901	43401
		38	41075	42575		68	41495	42995		98	41915	43415
		39	41089	42589	_	69	41509	43009		66	41929	43429
	_	40	41103	42603		70	41523	43023	-	100	41943	43443
		41	41117	42617		11	41537	43037	-	101	41957	43457
	•	42	41131	42631	_	72	41551	43051	_			
		43	41145	42645	_	73	41565	43065	_			
	-	44	41159	42659	_	74	41579	43079				
		45	41173	42673	-	75	41593	43093	-			
	_	46	41187	42687	_	76	41607	43107	_			
		47	41201	42701	_	11	41621	43121	_			
		48	41215	42715	_	78	41635	43135				
	-	49	41229	42729		79	41649	43149				
		50	41243	42743	_	80	41663	43163	_			
		51	41257	42757		81	41677	43177				
		52	41271	42771	_	82	41691	43191	-			
		53	41285	42785		83	41705	43205				
	-	54	41299	42799		84	41719	43219	_			
		55	41313	42813	_	85	41733	43233				
		56	41327	42827	_	86	41747	43247	_			
		57	41341	42841		87	41761	43261				
		58	41355	42855	_	88	41775	43275	-			
-		59	41369	42869	_	89	41789	43289	_			
-		00			_				-			

Page 145/183

Hz 42000 MH21 42000 AM12 42000 AM12 4200 RM12 7 MH2 B6 MH2 C GO RETURN 1600 86 MH2 A CH GO RETURN 10563.5 42063.5 40563.6 42063.5 40563.6 42063.5 40563.6 42064.5 40563.6 42064.5 40563.6 42064.5 40563.6 42064.5 40563.6 42064.5 40563.6 42074.5 40563.6 42074.5 40563.6 42074.5 40563.6 42074.5 40563.6 42074.5 40563.6 42074.5 40563.6 42074.5 40563.6 42074.5 40563.6 40794.5 40563.6 40794.5 40653.6 42144.5 40663.6 42144.5 40663.6	Sub-band I	U													
42000 1	-														
1500 MHz CH C 7 MHz 8 MHz 9 Miz 8 MHz 8 MHz 9 Miz 8 MHz 9 Miz 31 40763.5 8 MHz 31 40753.5 42063.5 9 4057.55 42063.5 42063.5 42063.5 9 4057.55 42081.5 33 40775.5 9 4058.55 42085.5 40785.5 40785.5 9 4058.55 42085.5 40785.5 40785.5 9 4053.55 42085.5 40785.5 40775.5 9 4053.55 42102.5 32 40775.5 9 4053.55 42102.5 42102.5 33 40775.5 9 4053.55 42102.5 42102.5 33 40775.5 9 4069.55 4213.5 40 33 40745.5 9 4069.55 4214.5 33 40845.5 9 4069.55 4214.5 40 40865.5 9 4067.5 4214.5 40 40845.5 9 4067.55 4214.5 41															
7 MHz CH GO 86 MHz 86 MHz 31 40763.5 86 MHz 60 87 MHz 31 40763.5 86 MHz 31 40563.5 42065.5 42065.5 40560.5 42065.5 42065.5 32 40775.5 40561.5 42065.5 42065.5 33 40775.5 40581.5 42065.5 42085.5 40784.5 34 40585.5 42085.5 42085.5 40775.5 34 40585.5 42095.5 33 40775.5 33 40505.5 42109.5 33 40775.5 33 40605.5 42165.5 42145.5 40815.5 40815.5 40650.5.5 42145.5 43 43833.5 40817.5 40650.5.5 42145.5 40 43833.5 40817.5 406651.5 42145.5 41 40865.5 40817.5 406651.5 42145.5 41 40865.5 41667.5 40667.5 4214		4z													
86 MHz CH GO RETURN A CH GO 40553.5 42065.5.5 42065.5.5 42065.5.5 42065.5.5 40775.5 40574.5 42065.5.5 42065.5.5 42065.5.5 40775.5 40775.5 40574.5 42065.5.5 42065.5.5 42065.5.5 40775.5 40775.5 40574.5 42065.5 42065.5 40775.5 33 40775.5 40585.5 42065.5 42085.5 40776.5 33 40775.5 40585.5 42085.5 42076.5 33 40775.5 34 40585.5 42095.5 33 40775.5 33 40775.5 40692.5 42109.5 36 40775.5 34 40875.5 40650.5 42143.5 5 40817.5 34 40875.5 40650.5 42143.5 42143.5 42143.5 40867.5 40867.5 40650.5 42143.5 42143.5 42143.5 416 40865.5 40867.5 40650.5<	ac. 7 MH2														
GO RETURN A CH GO 40563.5 42065.5.5 42065.5.5 42065.5.5 42065.5.5 42065.5.5 42076.5.5 40567.5 42065.5.5 42065.5.5 42065.5.5 42076.5.5 40775.5 40567.5 42074.5.5 42074.5.5 33 40777.5.5 40571.5 42074.5.5 42074.5.5 40774.5.5 40774.5.5 40581.5 42074.5.5 42074.5.5 40774.5.5 40774.5.5 40581.5 42074.5.5 40775.5 40775.5 40775.5 40581.5 42095.5 42075.5 40775.5 40775.5 40505.5 42095.5 42175.5 40775.5 40775.5 40665.5 42165.5 42165.5 42165.5 40875.5 40655.5 42165.5 42165.5 42165.5 40875.5 40656.5 42165.5 42165.5 42165.5 40875.5 406655.5 42165.5 42165.5 42165.5 408665.5 4066565.5 42165.5 42165		2										_			
4065.5. 4205.5.5 4206.5.5 4206.5.5 4077.5.5 40567.5 42067.5 42067.5 42077.5 33 4077.5.5 40567.5 42067.5 42076.5 33 4077.5.5 40574.5 42074.5 42074.5 33 4077.5.5 40587.5 42087.5 42078.5 34 4078.5.5 40587.5 42085.5 42085.5 4078.5.5 4078.5.5 40587.5 42085.5 42085.5 4078.5.5 4078.5.5 40687.5 4214.5 74 23 4081.5.5 40687.5 4213.5.5 41 4088.5.5 4084.5.5 40687.5 4213.5.5 41 4088.5.5 4086.5.5 40687.5 4214.5 74 4086.5.5 4086.5.5 40687.5 4214.5 74 4086.5.5 4086.5.5 40687.5 4214.5 74 4086.5.5 4086.5.5 40687.5 4214.5 744 4086.5.5 4086.5.5 40685.5		RETURN		4		GO	RETURN	4	СН	GO	RETURN		CH	GO	RETURN
40560.5 42060.5 42061.5 42071.5 40574.5 42074.5 42074.5 33 40771.5 40574.5 42074.5 42074.5 33 40774.5 40574.5 42074.5 42074.5 33 40774.5 40581.5 42084.5 42084.5 40784.5 40784.5 40581.5 42085.5 42085.5 40784.5 40786.5 40581.5 42085.5 42085.5 40785.5 40875.5 40605.5 42105.5 40885.5 40885.5 40885.5 40681.5 42133.5 414 40883.5 40845.5 40681.5 42133.5 414 40883.5 40845.5 40681.5 42133.5 414 41883.5 40845.5 40681.5 4214.5 414 41883.5 40845.5 40681.5 4214.5 414 414 40865.5 40681.5 4214.5 414 41883.5 40845.5 40681.5 4214.5 4145 41883.5	40553.			-		40763.5	42263.5		61	40973.5	42473.5		91	41183.5	42683.5
40567.5 42067.5 42074.5 4077.5 40574.5 42074.5 4074.5 34 40734.5 40574.5 42074.5 4077.5 34 40736.5 40581.5 42084.5 4078.5 37 40736.5 40581.5 42084.5 37 40736.5 40736.5 40581.5 42095.5 42095.5 42095.5 40736.5 40695.5 42140.5 37 4085.5 38 40815.5 40605.5 42140.5 37 4085.5 40816.5 40816.5 40665.5 42137.5 38 40875.5 40847.5 40665.5 42137.5 41 40835.5 40847.5 40665.5 42137.5 42 40847.5 40847.5 40665.5 42145.5 42 40865.5 40847.5 40665.5 42145.5 42 40865.5 40865.5 40665.5 42145.5 42 40865.5 40865.5 40665.5 42145.5 421	40560.			-	32	40770.5	42270.5	-	62	40980.5	42480.5		92	41190.5	42690.5
40574.5 42074.5 42074.5 4078.5 40581.5 42081.5 42081.5 4078.5 40581.5 42085.5 42085.5 4078.5 40585.5 42085.5 42085.5 4078.5 40655.5 42095.5 42095.5 4078.5 40695.5 42105.5 42105.5 4085.5 40605.5 42105.5 4214.5 4087.5 40667.5 4214.5 4087.5 4084.5 40667.5 42137.5 4087.5 4084.5 40667.5 4214.5 414 4087.5 40667.5 4214.5 42 4084.5 40667.5 4214.5 44 4085.5 40667.5 4214.5 44 4085.5 40667.5 4214.5 44 4085.5 40667.5 4214.5 44 4085.5 40668.5 4214.5 4214.5 40865.5 40668.5 4214.5 4214.5 40865.5 40668.5 42145.5 4214.5 </td <td>40567.</td> <td></td> <td></td> <td></td> <td>33</td> <td>40777.5</td> <td>42277.5</td> <td>-</td> <td>63</td> <td>40987.5</td> <td>42487.5</td> <td></td> <td><mark>93</mark></td> <td>41197.5</td> <td>42697.5</td>	40567.				33	40777.5	42277.5	-	63	40987.5	42487.5		<mark>93</mark>	41197.5	42697.5
40581.5 42081.5 42081.5 40791.5 40585.5 42085.5 42085.5 40795.5 40585.5 42085.5 42085.5 40795.5 40695.5 42095.5 40795.5 40795.5 40695.5 42095.5 42095.5 40875.5 40605.5 4216.5 4116.5 40875.5 40675.5 42137.5 40875.5 40875.5 40675.5 42137.5 40875.5 40875.5 40651.5 42144.5 40875.5 40875.5 40651.5 42144.5 40875.5 40847.5 40651.5 42144.5 414 40854.5 40651.5 42144.5 414 40854.5 40651.5 42144.5 414 40854.5 40651.5 42144.5 414 40854.5 40651.5 42145.5 414 40854.5 40665.5 42145.5 42 40865.5 40665.5 42145.5 42 40865.5 406655.5 42175.	40574.				34	40784.5	42284.5		64	40994.5	42494.5	-	94	41204.5	42704.5
40583.5 42083.5 42083.5 4073.5 40595.5 42095.5 42095.5 4073.5 40603.5 42103.5 42095.5 4083.5 40603.5 4213.5 4081.5 4083.5 40603.5 4213.5 4081.5 4083.5 40603.5 4213.5 4081.5 4083.5 40615.5 4213.5 411.6 4083.5 40637.5 42137.5 414.7 4083.5 40651.5 42143.5 414.4 4083.5 40651.5 42143.5 414.4 4083.5 40651.5 42143.5 438.7 40847.5 40651.5 42143.5 438.7 40847.5 40651.5 42143.5 438.7 40847.5 40651.5 42143.5 438.7 40847.5 40651.5 42143.5 438.7 40847.5 40651.5 42143.5 438.7 40865.5 40651.5 42143.5 438.7 40865.5 40651.5 42145.5	40581.			-	35	40791.5	42291.5	-	<mark>65</mark>	41001.5	42501.5		95	41211.5	42711.5
40585.5 42095.5 42085.5 42005.5 42005.5 40805.5 40603.5 42105.5 42105.5 33 40812.5 40603.5 42105.5 42116.5 40815.5 40813.5 40603.5 4213.5 40817.5 40816.5 40816.5 40603.5 4213.5 40817.5 40816.5 40816.5 40637.5 42137.5 42144.5 40816.5 40816.5 40658.5 42144.5 42144.5 40817.5 40816.5 40658.5 42144.5 43 40854.5 40817.5 40658.5 42144.5 44 40854.5 40865.5 40658.5 42145.5 44 40854.5 40865.5 40658.5 42165.5 42172.5 40865.5 40865.5 40658.5 42185.5 42172.5 40865.5 40865.5 40658.5 42172.5 42172.5 40867.5 40867.5 40668.5 42173.5 42173.5 42173.5 40875.5 4066	40588.			-	36	40798.5	42298.5		99	41008.5	42508.5		96	41218.5	42718.5
40602.5 42102.5 42102.5 42102.5 42105.5 40819.5 40605.5 42116.5 42116.5 40819.5 40819.5 40605.5 4213.5 40819.5 40819.5 40605.5 4213.5 40817.5 4083.5 40657.5 42137.5 40847.5 40847.5 40657.5 42144.5 4087.5 40847.5 40657.5 42144.5 4087.5 40847.5 40657.5 42144.5 40865.5 40847.5 40657.5 42144.5 4087.5 40847.5 40657.5 42145.5 43 4085.5 40657.5 42145.5 44 4085.5 40665.5 42165.5 47 40875.5 40657.5 42179.5 47 40875.5 40657.5 42175.5 47 40857.5 40657.5 42175.5 47 40857.5 40657.5 42175.5 42 40867.5 40667.5 42185.5 42 40857.5	40595.			-	37	40805.5	42305.5		67	41015.5	42515.5	_	16	41225.5	42725.5
40609.5 42109.5 42116.5 42116.5 42116.5 40819.5 40616.5 42116.5 4213.5 40826.5 40826.5 40623.5 4213.5 41 4083.5.5 40637.5 42137.5 42143.5 40847.5 40651.5 42143.5 42143.5 40847.5 40657.5 42143.5 42144.5 40864.5 40657.5 42143.5 43 40864.5 40658.5 42145.5 44 40865.5 40658.5 42143.5 44 40865.5 40658.5 42145.5 46 40865.5 40658.5 42172.5 43 40865.5 40667.5 42172.5 46 40865.5 40667.5 42172.5 40807.5 40865.5 40667.5 42172.5 40867.5 40867.5 40667.5 42172.5 42185.5 40867.5 40667.5 42172.5 42185.5 40867.5 40667.5 42172.5 42185.5 40867	40602.				38	40812.5	42312.5	_	68	41022.5	42522.5		98	41232.5	42732.5
40616.5 42116.5 4216.5 4216.5 40826.5 40623.5 4213.5 41 4083.5 40637.5 42137.5 42 4083.5 40637.5 42137.5 4083.5 40847.5 40657.5 42144.5 43 40847.5 40657.5 42144.5 43 40854.5 40657.5 42144.5 444 40854.5 40657.5 42145.5 44 40854.5 40657.5 42145.5 47 40875.5 40657.5 42179.5 47 40875.5 40657.5 42179.5 47 40875.5 40657.5 42179.5 47 40875.5 40657.5 42179.5 47 40875.5 40657.5 42179.5 47 40875.5 40657.5 42179.5 47 40875.5 40657.5 42179.5 47 40875.5 40667.5 42179.5 47 40875.5 40667.5 42179.5 40887	40609.				39	40819.5	42319.5	-	69	41029.5	42529.5	-	<mark>66</mark>	41239.5	42739.5
40623.5 42123.5 41 40833.5 40637.5 42137.5 42137.5 40847.5 40637.5 42137.5 42137.5 40847.5 40637.5 42137.5 42144.5 40847.5 40657.5 42144.5 40854.5 40847.5 40657.5 42161.5 41 40854.5 40657.5 42175.5 47 40854.5 40657.5 42172.5 47 40865.5 40657.5 42172.5 47 40875.5 40657.5 42172.5 47 40875.5 40657.5 42172.5 47 40865.5 40657.5 42172.5 47 40875.5 40657.5 42172.5 47 40875.5 40657.5 42186.5 51 40875.5 40657.5 42186.5 51 40896.5 40657.5 40887.5 50 40896.5 40667.5 42186.5 51 40903.5 40667.5 42200.5 52	40616.				40	40826.5	42326.5		70	41036.5	42536.5		100	41246.5	42746.5
40630.5 42130.5 42130.5 40840.5 40637.5 42137.5 42137.5 40847.5 40647.5 42144.5 43 40847.5 40657.5 42151.5 42145.5 40847.5 40655.5 42165.5 42165.5 40864.5 40655.5 42172.5 46 40865.5 40655.5 42172.5 47 40875.5 40655.5 42172.5 47 40875.5 40655.5 42172.5 47 40875.5 40655.5 42172.5 47 40875.5 40655.5 42172.5 47 40875.5 40655.5 42172.5 47 40875.5 40673.5 42133.5 47 40875.5 40665.5 42186.5 50 40896.5 40667.5 42133.5 51 40930.5 40667.5 40865.5 50 40896.5 40667.5 40896.5 50 40896.5 40705.5 42200.5 52	40623.				41	40833.5	42333.5		11	41043.5	42543.5		101	41253.5	42753.5
40637.5 42137.5 40847.5 40644.5 42144.5 43 40854.5 40654.5 42151.5 43 40854.5 40655.5 42151.5 43 40854.5 40655.5 42165.5 42172.5 40861.5 40655.5 42172.5 47 40855.5 40655.5 42172.5 47 40875.5 40655.5 42172.5 47 40875.5 40655.5 42172.5 47 40875.5 40655.5 42172.5 49 40835.5 40655.5 42172.5 59 40875.5 40655.5 42133.5 51 40875.5 40655.5 42133.5 51 40936.5 40705.5 42133.5 53 40917.5 40714.5 42201.5 54 40937.5 40714.5 42221.5 54 40937.5 40725.5 42235.5 54 40937.5 40742.5 42235.5 54 409324.5 <t< td=""><td>40630.</td><td>_</td><td></td><td></td><td>42</td><td>40840.5</td><td>42340.5</td><td>_</td><td>72</td><td>41050.5</td><td>42550.5</td><td></td><td>102</td><td>41260.5</td><td>42760.5</td></t<>	40630.	_			42	40840.5	42340.5	_	72	41050.5	42550.5		102	41260.5	42760.5
40644.5 42144.5 40854.5 40651.5 42151.5 40651.5 40655.5 42151.5 40651.5 40655.5 42151.5 40861.5 40655.5 42172.5 40865.5 40655.5 42172.5 40865.5 40655.5 42172.5 40875.5 40655.5 42172.5 40875.5 40673.5 42173.5 40875.5 40673.5 42173.5 49 40835.5 40673.5 42193.5 50 40836.5 40685.5 42193.5 50 40836.5 40685.5 42193.5 50 40836.5 40705.5 42133.5 51 40903.5 40707.5 42204.5 53 40917.5 40714.5 40744.5 54 40934.5 40745.5 40745.5 54 40937.5 40745.5 40745.5 54 40937.5 40745.5 40745.5 54 40937.5 40745.5 42244.5	40637.				43	40847.5	42347.5	-	73	41057.5	42557.5	-	103	41267.5	42767.5
40651.5 42151.5 40861.5 40861.5 40865.5 42158.5 40865.5 42158.5 40865.5 42158.5 40865.5 42157.5 40875.5 40865.5 40865.5 42172.5 40875.5 40865.5 40865.5 42172.5 40875.5 40875.5 40875.5 40875.5 40875.5 40875.5 40875.5 40875.5 50 40887.5 50 40887.5 50 40875.5 50 40887.5 50 40887.5 50 40887.5 50 40887.5 50 40887.5 50 40887.5 50 40887.5 50 40887.5 50 40837.5 50 40837.5 50 40837.5 50 40910.5 50 40837.5 50 40910.5 50 40910.5 50 40917.5 50 40917.5 50 40917.5 50 40917.5 50 40917.5 50 40917.5 50 40917.5 50 40917.5 50 40917.5 50 40917.5 50 40917.5 50 <t< td=""><td>40644.</td><td>-</td><td>-</td><td></td><td>44</td><td>40854.5</td><td>42354.5</td><td></td><td>74</td><td>41064.5</td><td>42564.5</td><td></td><td>104</td><td>41274.5</td><td>42774.5</td></t<>	40644.	-	-		44	40854.5	42354.5		74	41064.5	42564.5		104	41274.5	42774.5
40658.5 42158.5 42158.5 42158.5 40865.5 42165.5 42175.5 40875.5 50 40896.5 50 40896.5 50 40896.5 50 40896.5 50 40896.5 50 40896.5 50 40896.5 50 40896.5 50 40937.5 50 40937.5 50 40917.5 50 40917.5 50 40917.5 50 40917.5 50 40917.5 50 40917.5 50 40917.5 50 40917.5 50 40917.5 50 40917.5 50 40917.5 50 40917.5 50 40917.5 50 40917.5 50	40651.	_	-		45	40861.5	42361.5		75	41071.5	42571.5	_	105	41281.5	42781.5
40665.5 42165.5 42165.5 4217.5 40875.5 40672.5 42172.5 42173.5 40832.5 40673.5 42173.5 43 40835.5 40673.5 42179.5 43 40835.5 40673.5 42179.5 63 40835.5 40638.5 42186.5 60 40836.5 40633.5 42193.5 51 40905.5 40633.5 42193.5 51 40910.5 40700.5 42207.5 53 40917.5 40701.5 42214.5 54 40934.5 40714.5 40714.5 54 40931.5 40725.5 40735.5 54 40937.5 40725.5 42235.5 56 40937.5 40742.5 42242.5 56 40935.5 40745.5 40745.5 54 40955.5 40745.5 40745.5 56 40955.5 40745.5 40745.5 56 40955.5 40745.5 40745.5 5	40658.	-	-		46	40868.5	42368.5	_	76	41078.5	42578.5	_	106	41288.5	42788.5
40672.5 42172.5 48 4082.5 40679.5 42179.5 49 4083.5 40686.5 42186.5 42186.5 40836.5 40685.5 42186.5 42186.5 40836.5 40685.5 42186.5 67 40836.5 40635.5 42186.5 67 40836.5 40700.5 42201.5 57 40910.5 40701.5 42201.5 53 40917.5 40701.5 42214.5 54 40924.5 40714.5 40741.5 54 40931.5 40721.5 42224.5 56 40931.5 40725.5 42242.5 54 409324.5 40742.5 42242.5 56 40931.5 40742.5 42242.5 56 40931.5 40742.5 42242.5 56 40952.5 40742.5 42242.5 56 40952.5 40742.5 42242.5 57 40952.5 40742.5 42242.5 58 40952.5 40742.5 42242.5 58 40952.5 40742.5 42242.5 59 40952.5	40665.				47	40875.5	42375.5	_	<u>11</u>	41085.5	42585.5	_	107	41295.5	42795.5
40679.5 42179.5 49 40839.5 40686.5 42186.5 42186.5 40839.5 40680.5 42186.5 4033.5 40896.5 40700.5 42200.5 57 40910.5 40707.5 42207.5 53 40917.5 4077.5 42214.5 53 40917.5 4077.5 42214.5 54 40924.5 4071.5 42224.5 56 40938.5 4072.5 42224.5 56 40937.5 40742.5 42242.5 54 40936.5 40742.5 42242.5 56 40936.5 40742.5 42242.5 54 40952.5 40742.5 42242.5 56 40952.5 40742.5 42242.5 56 40952.5 40742.5 42242.5 56 40952.5	40672.	_			48	40882.5	42382.5		78	41092.5	42592.5		108	41302.5	42802.5
40686.5 42186.5 42186.5 40896.5 40693.5 42193.5 51 4090.5 40707.5 42200.5 52 40910.5 40707.5 42207.5 52 40917.5 40714.5 42214.5 53 40917.5 40715.5 42224.5 53 40917.5 40721.5 42224.5 54 40934.5 40725.5 42228.5 56 40937.5 40725.5 42224.5 56 40937.5 40742.5 42242.5 56 40936.5 40742.5 42242.5 56 40936.5 40742.5 42242.5 56 40936.5 40742.5 42249.5 57 40945.5 40749.5 42249.5 59 40955.5	40679.	-			49	40889.5	42389.5		79	41099.5	42599.5	-	109	41309.5	42809.5
40693.5 42193.5 51 40903.5 40700.5 42200.5 52 40910.5 40707.5 42207.5 53 40917.5 40707.5 42207.5 53 40917.5 4071.5 42214.5 53 40917.5 4071.5 42214.5 54 40934.5 40721.5 42224.5 56 40931.5 40728.5 42228.5 56 40938.5 40728.5 42224.5 56 40938.5 40742.5 42242.5 57 40936.5 40742.5 42242.5 58 40936.5 40742.5 42242.5 58 40957.5 40749.5 42249.5 59 40956.5	40686.	-	_		50	40896.5	42396.5	-	80	41106.5	42606.5	-	110	41316.5	42816.5
40700.5 42200.5 52 40910.5 40707.5 42207.5 53 40917.5 40714.5 42214.5 53 40917.5 40714.5 42214.5 54 40924.5 40721.5 40721.5 55 40931.5 40728.5 40728.5 56 40938.5 40735.5 42223.5 56 40936.5 40742.5 42242.5 56 40956.5 40749.5 42249.5 59 40956.5 40749.5 42249.5 59 40956.5	40693.	-	_		51	40903.5	42403.5	_	81	41113.5	42613.5		111	41323.5	42823.5
40707.5 42207.5 40917.5 40714.5 42214.5 54 40924.5 40714.5 42214.5 54 40934.5 40724.5 40724.5 55 40931.5 40728.5 40728.5 56 40934.5 40728.5 40728.5 56 40936.5 40728.5 40728.5 56 40936.5 40728.5 42235.5 57 40945.5 40742.5 42242.5 58 40955.5 40749.5 42249.5 59 40956.5	40700.	_			52	40910.5	42410.5	_	82	41120.5	42620.5	-	112	41330.5	42830.5
40714.5 42214.5 64 40324.5 40721.5 42221.5 55 40931.5 40728.5 42228.5 56 40938.5 40728.5 422235.5 56 40936.5 40735.5 422235.5 56 40936.5 40742.5 422242.5 53 40952.5 40742.5 42249.5 59 40952.5 40749.5 42249.5 59 40952.5	40707.				53	40917.5	42417.5		83	41127.5	42627.5		113	41337.5	42837.5
40721.5 42221.5 56 40331.5 40728.5 42228.5 56 40336.5 40735.5 42235.5 56 40336.5 40735.5 42235.5 57 40945.5 40742.5 42249.5 58 40952.5 40749.5 42249.5 59 40952.5	40714.	_	-		54	40924.5	42424.5		84	41134.5	42634.5	-	114	41344.5	42844.5
40728.5 40228.5 56 40338.5 40735.5 42235.5 57 40945.5 40742.5 42242.5 58 40952.5 40749.5 42249.5 59 40959.5	40721.	_	_		55	40931.5	42431.5	_	85	41141.5	42641.5	_	115	41351.5	42851.5
40735.5 42235.5 40945.5 40742.5 42242.5 58 40952.5 40743.5 42249.5 58 40959.5 40743.5 42249.5 59 40959.5	40728.	-	_		56	40938.5	42438.5	_	86	41148.5	42648.5	_	116	41358.5	42858.5
40742.5 42242.5 58 40952.5 40749.5 42249.5 59 40959.5	40735.	-			57	40945.5	42445.5		87	41155.5	42655.5		117	41365.5	42865.5
40749.5 42249.5 40959.5	40742.	-			58	40952.5	42452.5		88	41162.5	42662.5		118	41372.5	42872.5
	40749.	-	_		5 9	40959.5	42459.5	_	89	41169.5	42669.5	_	119	41379.5	42879.5
		5 42256.5	_		09	40966.5	42466.5		06	41176.5	42676.5	_	120	41386.5	42886.5

No. 42021 299

GOVERNMENT GAZETTE, 9 NOVEMBER 2018

Sub-bane	d E contin	ued								
F ref (MHz)	42000									
Ctr.Freq (MHz)	42000									
Separ.	1500 MHz									
Ch.Spac.	7 MHz									
Ctr. Gap	86 MHz									
СН	GO	RETURN	4	СН	GO	RETURN		СН	GO	RETURN
121	41393.5	42893.5	/	151	41603.5	43103.5		181	41813.5	43313.5
122	41400.5	42900.5	1	152	41610.5	43110.5		182	41820.5	43320.5
123	41407.5	42907.5		153	41617.5	43117.5		183	41827.5	43327.5
124	41414.5	42914.5		154	41624.5	43124.5		184	41834.5	43334.5
125	41421.5	42921.5	1	155	41631.5	43131.5		185	41841.5	43341.5
126	41428.5	42928.5	1	156	41638.5	43138.5		186	41848.5	43348.5
127	41435.5	42935.5	i	157	41645.5	43145.5		187	41855.5	43355.5
128	41442.5	42942.5		158	41652.5	43152.5		188	41862.5	43362.5
129	41449.5	42949.5	/	159	41659.5	43159.5	- i	189	41869.5	43369.5
130	41456.5	42956.5	/	160	41666.5	43166.5		190	41876.5	43376.5
131	41463.5	42963.5	1	161	41673.5	43173.5		191	41883.5	43383.5
132	41470.5	42970.5	1	162	41680.5	43180.5		192	41890.5	43390.5
133	41477.5	42977.5	1	163	41687.5	43187.5		193	41897.5	43397.5
134	41484.5	42984.5	1	164	41694.5	43194.5		194	41904.5	43404.5
135	41491.5	42991.5		165	41701.5	43201.5		195	41911.5	43411.5
136	41498.5	42998.5	1	166	41708.5	43208.5		196	41918.5	43418.5
137	41505.5	43005.5		167	41715.5	43215.5		197	41925.5	43425.5
138	41512.5	43012.5		168	41722.5	43222.5	1	198	41932.5	43432.5
139	41519.5	43019.5	1	169	41729.5	43229.5		199	41939.5	43439.5
140	41526.5	43026.5		170	41736.5	43236.5		200	41946.5	43446.5
141	41533.5	43033.5	1	171	41743.5	43243.5		201	41953.5	43453.5
142	41540.5	43040.5		172	41750.5	43250.5	1	202	41960.5	43460.5
143	41547.5	43047.5		173	41757.5	43257.5				
144	41554.5	43054.5		174	41764.5	43264.5				
145	41561.5	43061.5		175	41771.5	43271.5				
146	41568.5	43068.5	1	176	41778.5	43278.5				
147	41575.5	43075.5	i	177	41785.5	43285.5				
148	41582.5	43082.5		178	41792.5	43292.5				
149	41589.5	43089.5	1	179	41799.5	43299.5				
150	41596.5	43096.5	1	180	41806.5	43306.5				

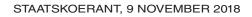
No. 42021 301

Appendix F 66 to 76 GHz and 81 to 86 GHz Additional Information

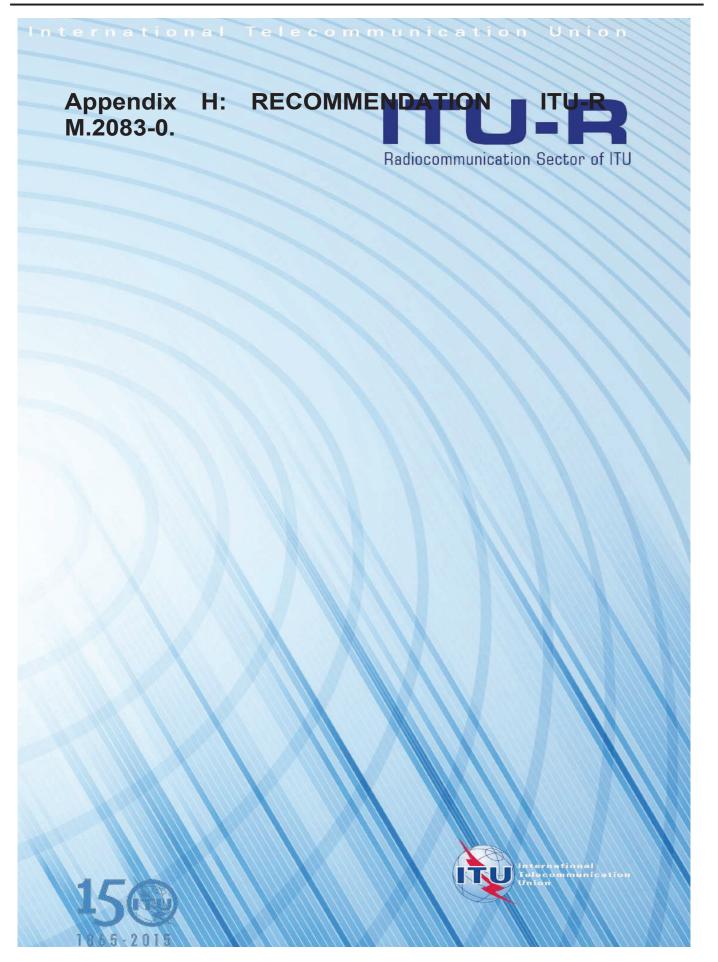
Page 149/183

No. 42021 303

Appendix G E-Band Arrangements


GOVERNMENT GAZETTE, 9 NOVEMBER 2018

Self Coordinated E-Band


Channel Number	1	2	3	4	5	6	7	8	9	10
Centre frequency (GHz)	73.500	73.750	74.000	74.250	74.500	74.750	75.000	75.250	75.500	75.750
Centre frequency (GHz)	83.500	83.750	84,000	84.250	84.500	84,750	85.000	85.250	85.500	85.750

ICASA Coordinated E-Band

Channel Number	1	2	3	4	5	6	7	8
Centre frequency (GHz)	71.250	71.500	71.750	72.000	72.250	72.500	72.750	73.000
Centre frequency (GHz)	81.250	81.500	81.750	82.000	82.250	82.500	82.750	83.000

No. 42021 305

GOVERNMENT GAZETTE, 9 NOVEMBER 2018

Recommendation ITU-R M.2083-0 (09/2015)

IMT Vision – Framework and overall objectives of the future development of IMT for 2020 and beyond

> M Series Mobile, radiodetermination, amateur and related satellite services

International Telecommunication

No. 42021 307

ITU-R M.2083-0. ii

Foreword

The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio-frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted.

The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups.

GOVERNMENT GAZETTE, 9 NOVEMBER 2018

ITU-R M.2083-0. iii

11 Policy on Intellectual Property Right (IPR)

ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Annex 1 of Resolution ITU-R 1. Forms to be used for the submission of patent statements and licensing declarations by patent holders are available from http://www.itu.int/ITU-R/ISO/IEC referenced in Annex 1 of Resolution ITU-R 1. Forms to be used for the submission of patent statements and licensing declarations by patent holders are available from http://www.itu.int/ITU-R/go/patents/en where the Guidelines for Implementation of the Common Patent Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found.

	Series of ITU-R Recommendations
	(Also available online at <u>http://www.itu.int/publ/R-REC/en</u>)
Series	Title
во	Satellite delivery
BR	Recording for production, archival and play-out; film for television
BS	Broadcasting service (sound)
вт	Broadcasting service (television)
F	Fixed service
Μ	Mobile, radiodetermination, amateur and related satellite services
Р	Radiowave propagation
RA	Radio astronomy
RS	Remote sensing systems
S	Fixed-satellite service
SA	Space applications and meteorology
SF	Frequency sharing and coordination between fixed-satellite and fixed service systems
SM	Spectrum management
SNG	Satellite news gathering
TF	Time signals and frequency standards emissions
v	Vocabulary and related subjects

Note: This ITU-R Recommendation was approved in English under the procedure detailed in Resolution ITU-R 1.

Electronic Publication Geneva, 2015

No. 42021 309

ITU-R M.2083-0.

iv

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without written permission of ITU.

GOVERNMENT GAZETTE, 9 NOVEMBER 2018

ITU-R M.2083-0 5

RECOMMENDATION ITU-R M.2083-0

IMT Vision – Framework and overall objectives of the future development of IMT for 2020 and beyond

(2015)

Scope

This Recommendation defines the framework and overall objectives of the future development of International Mobile Telecommunications (IMT) for 2020 and beyond in light of the roles that IMT could play to better serve the needs of the networked society, for both developed and developing countries, in the future. In this Recommendation, the framework of the future development of IMT for 2020 and beyond, including a broad variety of capabilities associated with envisaged usage scenarios, is described in detail. Furthermore, this Recommendation addresses the objectives of the future development of IMT for 2020 and beyond, which includes further enhancement of existing IMT and the development of IMT-2020. It should be noted that this Recommendation is defined considering the development of IMT to date based on Recommendation ITU-R M.1645.

Keywords

IMT, IMT-2020

Abbreviations/Glossary

ICT	Information and Communication Technology		
IMT	International Mobile Telecommunications		
IoT	Internet of Things		
M2M	Machine-to-Machine		
MIMO	Multiple Input Multiple Output		
QoE Experience		Quality	of
QoS	Quality of Service		
QoS RAT	Quality of Service Radio access technology		

Related ITU Recommendations, Reports

- Recommendation ITU-R M.1645 Framework and overall objectives of the future development of IMT-2000 and systems beyond IMT-2000
- Recommendation ITU-R M.2012 Detailed specifications of the terrestrial radio interfaces of International Mobile Telecommunications Advanced (IMT-Advanced)

Report ITU-R M.2320 - Future technology trends of terrestrial IMT systems

Report ITU-R M.2370 - IMT Traffic estimates for the years 2020 to 2030

Report ITU-R M.2376 - Technical feasibility of IMT in bands above 6 GHz

ITU-R M.2083-0 6

Report ITU-R M.2134 – Requirements related to technical performance for IMT-Advanced radio interface(s)

The ITU Radiocommunication Assembly,

considering

a) that ITU has contributed to standardization and harmonized use of IMT, which has provided telecommunication services on a global scale;

b) that technological advancement and the corresponding user needs will promote innovation and accelerate the delivery of advanced communication applications to consumers;

c) that Question ITU-R 229/5 addresses further development of the terrestrial component of IMT and the relevant studies under this Question are in progress within ITU-R;

d) that Recommendation ITU-R M.1645 defines the framework and overall objectives of the future development of IMT-2000 and systems beyond IMT-2000;

e) that for global operation and economies of scale, which are key requirements for the success of mobile telecommunication systems, it is desirable to establish a harmonized timeframe for future development of IMT considering technical, operational and spectrum related aspects;

f) that wireless communication applications are expected to expand into new market segments to facilitate the digital economy, e.g. smart grid, e-health, intelligent transport systems and traffic control, which would bring requirements beyond what can be addressed in today's IMT application areas;

g) that rapid uptake of smartphones, tablets and innovative mobile applications created by users has resulted in a tremendous increase in the volume of mobile data traffic;

h) that the number of devices accessing the network are expected to increase due to the emerging applications of Internet of Things (IoT);

i) that technologies such as beamforming, massive-Multiple Input Multiple Output (MIMO) are easier to implement in higher frequencies due to short wavelength;

j) that wide contiguous bandwidth would enhance data delivery efficiency and ease the complexity of hardware implementation;

k) that the cell size is being reduced (e.g. the order of some tens of metres) to provide larger area traffic capacity in dense areas;

I) that IMT interworks with other radio systems,

recognizing

a) that some administrations had deployed IMT-Advanced systems before global deployment due to the rapid increase of data traffic;

ITU-R M.2083-0 7

b) that development of new radio interfaces that support the new capabilities of IMT-2020 is expected along with the enhancement of IMT-2000 and IMT-Advanced systems,

noting

that pursuant to Article 44 of the ITU Constitution, Member States shall endeavour to apply the latest technical advances as soon as possible,

recommends

that the Annex should be used as the framework and the overall objectives for the future development of IMT for 2020 and beyond.

No. 42021 313

ITU-R M.2083-0

8

Annex

TABLE OF CONTENTS

9

1	Introduction
2	Observation of trends
2.1	User and application trends
2.2	Growth in IMT traffic
2.3	
2.4	
2.5	
3	Evolution of IMT
3.1	How IMT has developed
3.2	Role of IMT for 2020 and beyond
4	Usage scenarios for IMT for 2020 and beyond20
5	Capabilities of IMT-2020
6	Framework and objectives
6.1	Relationships
6.2	Timelines
6.3	Focus areas for further study

GOVERNMENT GAZETTE, 9 NOVEMBER 2018

ITU-R M.2083-0 9

12 1 Introduction

The socio-technical evolution in the last few decades has been significantly driven by the evolution of mobile communications and has contributed to the economic and social development of both developed and developing countries. Mobile communications has become closely integrated in the daily life of the whole society. It is expected that the socio-technical trends and the evolution of mobile communications systems will remain tightly coupled together and will form a foundation for society in 2020 and beyond.

In the future, however, it is foreseen that new demands, such as more traffic volume, many more devices with diverse service requirements, better quality of user experience (QoE) and better affordability by further reducing costs, will require an increasing number of innovative solutions.

The objective of this Recommendation is to establish the vision for IMT for 2020 and beyond, by describing potential user and application trends, growth in traffic, technological trends and spectrum implications, and by providing guidelines on the framework and the capabilities for IMT for 2020 and beyond.

No. 42021 315

ITU-R M.2083-0 10

13 2 Observation of trends

13.1 2.1 User and application trends

Mobile devices play various, continuously evolving roles in everyday life. Future IMT systems should support emerging new use cases, including applications requiring very high data rate communications, a large number of connected devices, and ultra-low latency and high reliability applications. More specific user and application trends are explained in §§ 2.1.1 to 2.1.8.

13.1.1 2.1.1 Supporting very low latency and high reliability human-centric communication

People expect the experience of instantaneous connectivity wherein applications need to exhibit "flash" behaviour without waiting times: a single click and the response is perceived as instantaneous. Flash behaviour will be a key factor for the success of cloud services and virtual reality and augmented reality applications. The low latency and high reliability communication that supports such behaviour thus becomes an enabler for the future development of new applications, e.g. in health, safety, office, entertainment, and other sectors.

13.1.2 2.1.2 Supporting very low latency and high reliability machine-centric communication

The reliability and latency in today's communication systems have been designed with the human user in mind. For future wireless systems, the design of new applications is envisaged based on machine-to-machine (M2M) communication with real-time constraints. Driverless cars, enhanced mobile cloud services, real-time traffic control optimization, emergency and disaster response, smart grid, e-health or efficient industrial communications are examples of where low latency and high reliability can improve quality of life.

13.1.3 2.1.3 Supporting high user density

Users will expect a satisfactory end-user experience in the presence of a large number of concurrent users, for example in a crowd with a high traffic density per unit area and a large number of handsets and machines/devices per unit area. Examples are audio-visual content to be provided concurrently across an entire cell or infotainment applications in shopping malls, stadiums, open air festivals, or other public events that attract a lot of people. This includes users who use their phone while in unexpected traffic jams, or when travelling in public transportation systems, as well as professionals working in organisations such as police, fire brigades, and ambulances to exploit the public communication networks in crowded environments and machine-centric devices.

13.1.4 2.1.4 Maintaining high quality at high mobility

A connected society in the years beyond 2020 will need to accommodate a similar user experience for end-users on the move and when they are static e.g. at home or in the office. To offer the "best experience" to highly mobile users and communicating machine

ITU-R M.2083-0 11

devices, robust and reliable connectivity solutions are needed as well as the ability to efficiently maintain service quality with mobility.

Maintaining high quality at high mobility will enable successful deployment of applications on user equipment located within a moving platform such as cars or high-speed trains which are being deployed in several countries. Connectivity on mobile platforms may be provided via IMT, Radio Local Area Network (RLAN) or another network on that platform using suitable backhaul.

13.1.5 2.1.5 Enhanced multimedia services

It is likely that demand for mobile high-definition multimedia will increase in many areas beyond entertainment, such as medical treatment, safety, and security.

User devices will get enhanced media consumption capabilities, such as Ultra-High Definition display, multi-view High Definition display, mobile 3D projections, immersive video conferencing, and augmented reality and mixed reality display and interface. This will all lead to a demand for significantly higher data rates. Media delivery will be both to individuals and to groups of users.

13.1.6 2.1.6 Internet of Things

In the future, every object that can benefit from being connected will be connected through wired or wireless internet technologies. Therefore, the number of connected devices will grow rapidly and is expected to exceed the number of human user devices in the future.

These connected "things" can be smart phones, sensors, actuators, cameras, vehicles, etc., ranging from low-complexity devices to highly complex and advanced devices. A significant number of connected devices are expected to use IMT systems.

As a result, the connected entities are bound to have varying levels of energy consumption, transmission power, latency requirements, cost, and many other indices critical for stable connection.

In addition, as more and more things get connected, various services that utilize the connection capabilities of things will appear. Smart energy distribution grid system, agriculture, healthcare, vehicle-to-vehicle and vehicle-to-road infrastructure communication are generally viewed as potential fields for further growth of the Internet of Things (IoT).

13.1.7 2.1.7 Convergence of applications

New applications are increasingly being delivered over IMT, including e-Government, public protection and disaster relief communication, education, linear²² and on-demand

²² A linear audio-visual service refers to the "traditional" way of offering radio or TV services. Listeners and viewers "tune in" to the content organised as a scheduled sequence that may consist of e.g. news, shows, drama or movies on TV or various types of audio content on radio. These sequences of programmes are set up by content providers and cannot be changed by a

ITU-R M.2083-0 12

audio-visual content, and e-health. This convergence of applications must take account of the requirements associated with these applications.

13.1.8 2.1.8 Ultra-accurate positioning applications

As the accuracy of positioning gets better, location-based service applications that provide improved emergency rescue services, as well as precise ground based navigation service for unmanned vehicles or drones may expand extensively.

13.2 2.2 Growth in IMT traffic

There are many drivers influencing the growth of future IMT traffic demand, especially the adoption of devices with enhanced capabilities that require increased bit rates and bandwidth usage. Similar drivers increased traffic in the transition from IMT-2000 to IMT-Advanced.

The main drivers behind the anticipated traffic growth include increased video usage, device proliferation and application uptake. These are expected to evolve over time, and this evolution will differ between countries due to social and economic differences. These drivers and other trends which impact traffic growth are detailed in Report ITU-R M.2370. The Report contains global IMT traffic estimates beyond 2020 from several sources. These estimates anticipate that global IMT traffic will grow in the range of 10-100 times from 2020 to 2030.

Traffic asymmetry aspects for this period are also presented in Report ITU-R M.2370. It is observed that the current average traffic asymmetry ratio of mobile broadband is in favour of the downlink, and this is expected to increase due to growing demand for audio-visual content.

13.3 2.3 Technology trends

Report ITU-R M.2320 provides a broad view of future technical aspects of terrestrial IMT systems considering the timeframe 2015-2020 and beyond. It includes information on technical and operational characteristics of IMT systems, including the evolution of IMT through advances in technology and spectrally-efficient techniques, and their deployment. Report ITU-R M.2320 provides more detailed information on the following technical aspects presented in §§ 2.3.1 to 2.3.8. In addition, technologies required to enable higher data rates are explained in § 2.3.9.

13.3.1 2.3.1 Technologies to enhance the radio interface

Advanced waveforms, modulation and coding, and multiple access schemes, e.g. filtered OFDM (FOFDM), filter bank multi-carrier modulation (FBMC), pattern division multiple access (PDMA), sparse code multiple access (SCMA), interleave division multiple access

ITU-R M.2083-0 13

(IDMA) and low density spreading (LDS) may improve the spectral efficiency of the future IMT systems.

Advanced antenna technologies such as 3D-beamforming (3D-BF), active antenna system (AAS), massive MIMO and network MIMO will achieve better spectrum efficiency.

In addition, TDD-FDD joint operation, dual connectivity and dynamic TDD can enhance the spectrum flexibility.

Simultaneous transmission and reception on the same frequency with self-interference cancellation could increase spectrum efficiency.

Other techniques such as flexible backhaul and dynamic radio access configurations can also enable enhancements to the radio interface.

In small cells, higher-order modulation and modifications to the reference-signal structure with reduced overhead may provide performance enhancements due to lower mobility in small cell deployments and potentially higher signal-to interference ratios compared to the wide-area case.

Flexible spectrum usage, joint management of multiple radio access technologies (RATs) and flexible uplink/downlink resource allocation, can provide technical solutions to address the growing traffic demand in the future and may allow more efficient use of radio resources.

13.3.2 2.3.2 Network technologies

Future IMT will require more flexible network nodes which are configurable based on the Software-Defined Networking (SDN) architecture and network function virtualization (NFV) for optimal processing the node functions and improving the operational efficiency of network.

Featuring centralized and collaborative system operation, the cloud RAN (C-RAN) encompasses the baseband and higher layer processing resources to form a pool so that these resources can be managed and allocated dynamically on demand, while the radio units and antenna are deployed in a distributed manner.

The radio access network (RAN) architecture should support a wide range of options for inter-cell coordination schemes. The advanced self-organizing network (SON) technology is one example solution to enable operators to improve the OPEX efficiency of the multi-RAT and multi-layer network, while satisfying the increasing throughput requirement of subscriber.

13.3.3 2.3.3 Technologies to enhance mobile broadband scenarios

A relay based multi-hop network can greatly enhance the Quality of Service (QoS) of cell edge users. Small-cell deployment can improve the QoS of users by decreasing the number of users in a cell and user quality of experience can be enhanced.

Dynamic adaptive streaming over HTTP (DASH) enhancement is expected to improve user experience and accommodate more video streaming content in existing infrastructure.

No. 42021 319

ITU-R M.2083-0 14

Bandwidth saving and transmission efficiency improvement is an evolving trend for Evolved Multimedia Broadcast and Multicast Service (eMBMS). Dynamic switching between unicast and multicast transmission can be beneficial.

IMT systems currently provide support for RLAN interworking, at the core network level, including seamless as well as non-seamless mobility, and can offload traffic from cellular networks into license-exempt spectrum bands.

Context aware applications may provide more personalized services that ensure high QoE for the end user and proactive adaptation to the changing context.

Proximity-based techniques can provide applications with information whether two devices are in close proximity of each other, as well as enable direct device-to-device (D2D) communication. Group communication, including push-to-talk type of communication, is highly desirable for public safety.

13.3.4 2.3.4 Technologies to enhance massive machine type communications

Future IMT systems are expected to connect a large number of M2M devices with a range of performance and operational requirements, with further improvement of low-cost and low-complexity device types as well as extension of coverage.

13.3.5 2.3.5 Technologies to enhance ultra-reliable and low latency communications

To achieve ultra-low latency, the data and control planes may both require significant enhancements and new technical solutions addressing both the radio interface and network architecture aspects.

It is envisioned that future wireless systems will, to a larger extent, also be used in the context of machine-to-machine communications, for instance in the field of traffic safety, traffic efficiency, smart grid, e-health, wireless industry automation, augmented reality, remote tactile control and tele-protection, requiring high reliability techniques.

13.3.6 2.3.6 Technologies to improve network energy efficiency

In order to enhance energy efficiency, energy consumption should be considered in the protocol design.

The energy efficiency of a network can be improved by both reducing RF transmit power and saving circuit power. To enhance energy efficiency, the traffic variation characteristic of different users should be well exploited for adaptive resource management. Examples include discontinuous transmission (DTX), base station and antenna muting, and traffic balancing among multiple RATs.

13.3.7 2.3.7 Terminal technologies

The mobile terminal will become a more human friendly companion as a multi-purpose Information and Communication Technology (ICT) device for personal office and entertainment, and will also evolve from being predominantly a hand-held smart phone to also include wearable smart devices.

Technologies for chip, battery, and display should therefore be further improved.

ITU-R M.2083-0 15

13.3.8 2.3.8 Technologies to enhance privacy and security

Future IMT systems need to provide robust and secure solutions to counter the threats to security and privacy brought by new radio technologies, new services and new deployment cases.

13.3.9 2.3.9 Technologies enabling higher data rates

In order to achieve higher data rates and improvements in capacity, the following key techniques are needed:

Spectrum:

- Utilization of large blocks of spectrum in higher frequency bands
- Carrier aggregation

Physical Layer:

• Enhanced spectral efficiency by means of e.g. advanced physical layer techniques (modulation, coding) and advances in spatial processing (network MIMO and Massive MIMO), plus exploitation of other novel/alternative ideas.

Network:

Network densification

13.4 2.4 Studies on technical feasibility of IMT between 6 and 100 GHz

The development of IMT for 2020 and beyond is expected to enable new use cases and applications, and addresses rapid traffic growth, for which contiguous and broader channel bandwidths than currently available for IMT systems would be desirable. This suggests the need to consider spectrum resources in higher frequency ranges.

Report ITU-R M.2376 provides information on the technical feasibility of IMT in the frequencies between 6 and 100 GHz. It includes information on potential new IMT radio technologies and system approaches, which could be appropriate for operation in this frequency range.

The Report presents measurement data on propagation in this frequency range in several different environments. Both line-of-sight and non-line-of-sight measurement results for stationary and mobile cases as well as outdoor-to-indoor results have been presented in the report. It also includes performance simulations results for several different deployment scenarios.

The Report describes solutions based on MIMO and beamforming with a large number of antenna elements, which compensate for the increasing propagation loss with frequency; these have become increasingly feasible due to the ability to exploit chip-scale antenna solutions and modular adaptive antenna arrays that do not require an ADC/DAC for each antenna element. The practicality of manufacturing commercial transmitters and receivers at these frequencies is investigated, as evidenced by availability of commercial 60 GHz multi-gigabit wireless systems (MGWS) products and prototyping activities that are already underway at frequencies such as 11, 15, 28, 44, 70 and 80 GHz.

No. 42021 321

ITU-R M.2083-0 16

The potential advantages of using the same spectrum for both access and fronthaul/backhaul, as compared with using two different frequencies for access and fronthaul/backhaul, are described in the Report.

The theoretical assessment, simulations, measurements, technology development and prototyping described in the Report indicate that utilizing the bands between 6 and 100 GHz is feasible for studied IMT deployment scenarios, and could be considered for the development of IMT for 2020 and beyond.

13.5 2.5 Spectrum implications

Report ITU-R M.2290 provides the results of studies on estimated global spectrum requirements for terrestrial IMT in the year 2020. The estimated total requirements include spectrum already identified for IMT plus additional spectrum requirements.

It is noted that no single frequency range satisfies all the criteria required to deploy IMT systems, particularly in countries with diverse geographic and population density; therefore, to meet the capacity and coverage requirements of IMT systems multiple frequency ranges would be needed. It should be noted that there are differences in the markets and deployments and timings of the mobile data growth in different countries.

For future IMT systems in the year 2020 and beyond, contiguous and broader channel bandwidths than available to current IMT systems would be desirable to support continued growth. Therefore, availability of spectrum resources that could support broader, contiguous channel bandwidths in this time frame should be explored. Research efforts must be continued to increase spectrum efficiency and to explore the availability of contiguous broad channels.

Furthermore, if additional spectrum is made available for IMT, the potential implications to the existing uses and users of that spectrum need to be addressed.

13.5.1 2.5.1 Spectrum harmonization

As the amount of spectrum required for mobile services increases, it becomes increasingly desirable for existing and newly allocated and identified spectrum to be harmonized. The benefits of spectrum harmonization include: facilitating economies of scale, enabling global roaming, reducing equipment design complexity, preserving battery life, improving spectrum efficiency and potentially reducing cross border interference. Typically, a mobile device contains multiple antennas and associated radio frequency front-ends to enable operation in multiple bands to facilitate roaming. While mobile devices can benefit from common chipsets, variances in frequency arrangements necessitate different components to accommodate these differences, which leads to higher equipment design complexity.

Therefore, harmonization of spectrum for IMT will lead to commonality of equipment and is desirable for achieving economies of scale and affordability of equipment.

13.5.2 2.5.2 Importance of contiguous and wider spectrum bandwidth

The proliferation of smart devices (e.g. smartphones, tablets, televisions, etc.) and a wide range of applications requiring a large amount of data traffic have accelerated demand for

ITU-R M.2083-0 17

wireless data traffic. Future IMT systems are expected to provide significant improvement to accommodate this rapidly increasing traffic demand. In addition, future IMT systems are expected to provide gigabit-per-second user data rate services. The currently available frequency bands and their bandwidth differ across countries and regions and this leads to many problems associated with device complexity and possible interference issues. Contiguous, broader and harmonized frequency bands, aligned with future technology development, would address these problems and would facilitate achievement of the objectives of future IMT systems.

In particular, bandwidths to support the different usage scenarios in § 4 (e.g. enhanced mobile broadband, ultra-reliable and low-latency communications, and massive machine type communications) would vary. For those scenarios requiring several hundred MHz up to at least 1 GHz, there would be a need to consider wideband contiguous spectrum above 6 GHz.

No. 42021 323

ITU-R M.2083-0 18

14 3 Evolution of IMT

14.1 3.1 How IMT has developed

Following the adoption by International Radio Consultative Committee (CCIR) of the Study Question on the Future Public Land Mobile Telecommunication Systems (FPLMTS) in 1985, it took a total of 15 years for the identification of the radio spectrum in 1992 and development of IMT-2000 specifications (Recommendation ITU-R M.1457). After this development, deployment of IMT-2000 systems started.

The ITU then immediately started to develop the vision Recommendation (Recommendation ITU-R M.1645, June 2003) on Framework and overall objectives of the future development of IMT-2000 and systems beyond IMT-2000. Based on this Recommendation, the ITU has released the Recommendation ITU-R M.2012 in the terrestrial radio interface of IMT-Advanced in 2012. It took nine years for the ITU to develop the second phase of IMT after the completion of the vision recommendation. After this development, deployment of the IMT-Advanced systems started.

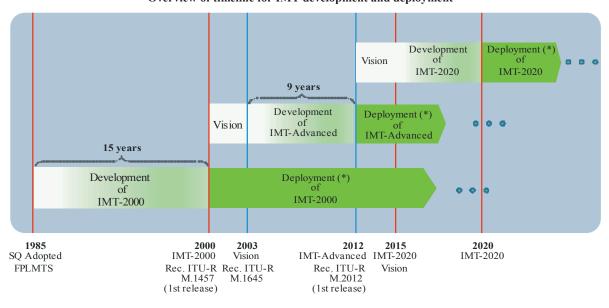


FIGURE 1
Overview of timeline for IMT development and deployment

(*) Deployment timing may vary across countries.

M.2083-01

14.2 3.2 Role of IMT for 2020 and beyond

IMT systems serve as a communication tool for people and a facilitator which assists the development of other industry sectors, such as medical science, transportation, and education. Considering the key trends described in § 2, IMT should continue to contribute to the following:

ITU-R M.2083-0 19

- Wireless infrastructure to connect the world: Broadband connectivity will acquire the same level of importance as access to electricity. IMT will continue to play an important role in this context as it will act as one of the key pillars to enable mobile service delivery and information exchanges. In the future, private and professional users will be provided with a wide variety of applications and services, ranging from infotainment services to new industrial and professional applications.
- New ICT market: The development of future IMT systems is expected to promote the emergence of an integrated ICT industry which will constitute a driver for economies around the globe. Some possible areas include: the accumulation, aggregation and analysis of big data; delivering customized networking services for enterprise and social network groups on wireless networks
- Bridging the Digital Divide: IMT will continue to help closing the gaps caused by an increasing Digital Divide. Affordable, sustainable and easy-todeploy mobile and wireless communication systems can support this objective while effectively saving energy and maximizing efficiency.
- New ways of communication: IMT will enable sharing of any type of contents anytime, anywhere through any device. Users will generate more content and share this content without being limited by time and location.
- New forms of education: IMT can change the method of education by providing easy access to digital textbooks or cloud-based storage of knowledge on the internet, boosting applications such as e-learning, e-health, and ecommerce.
- Promote Energy Efficiency: IMT enables energy efficiency across a range of sectors of the economy by supporting machine to machine communication and solutions such as smart grid, teleconferencing, smart logistics and transportation.
- **Social changes**: Broadband networks make it easier to quickly form and share public opinions for a political or social issue through social network service. Opinion formation of a huge number of connected people due to their ability to exchange information anytime anywhere will become a key driver of social changes.
- New art and culture: IMT will support people to create works of art or participate in group performances or activities, such as a virtual chorus, flash mob, co-authoring or song writing. Also, people connected to a virtual world are able to form new types of communities and establish their own cultures.

No. 42021 325

ITU-R M.2083-0 20

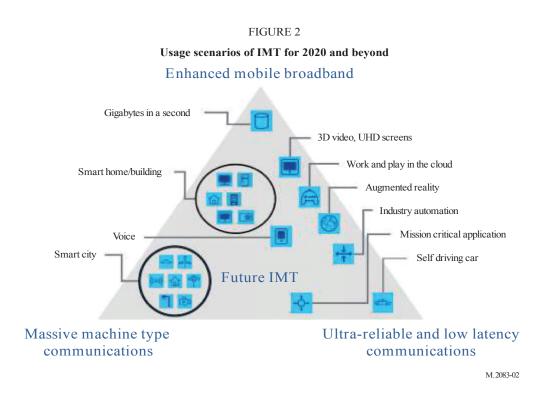
15 4 Usage scenarios for IMT for 2020 and beyond

IMT for 2020 and beyond is envisaged to expand and support diverse usage scenarios and applications that will continue beyond the current IMT. Furthermore, a broad variety of capabilities would be tightly coupled with these intended different usage scenarios and applications for IMT for 2020 and beyond. The usage scenarios for IMT for 2020 and beyond include:

- Enhanced Mobile Broadband: Mobile Broadband addresses the humancentric use cases for access to multi-media content, services and data. The demand for mobile broadband will continue to increase, leading to enhanced Mobile Broadband. The enhanced Mobile Broadband usage scenario will come with new application areas and requirements in addition to existing Mobile Broadband applications for improved performance and an increasingly seamless user experience. This usage scenario covers a range of cases, including wide-area coverage and hotspot, which have different requirements. For the hotspot case, i.e. for an area with high user density, very high traffic capacity is needed, while the requirement for mobility is low and user data rate is higher than that of wide area coverage. For the wide area coverage case, seamless coverage and medium to high mobility are desired, with much improved user data rate compared to existing data rates. However the data rate requirement may be relaxed compared to hotspot.
- Ultra-reliable and low latency communications: This use case has stringent requirements for capabilities such as throughput, latency and availability. Some examples include wireless control of industrial manufacturing or production processes, remote medical surgery, distribution automation in a smart grid, transportation safety, etc.
- Massive machine type communications: This use case is characterized by a very large number of connected devices typically transmitting a relatively low volume of non-delay-sensitive data. Devices are required to be low cost, and have a very long battery life.

Additional use cases are expected to emerge, which are currently not foreseen. For future IMT, flexibility will be necessary to adapt to new use cases that come with a wide range of requirements.

Future IMT systems will encompass a large number of different features. Depending on the circumstances and the different needs in different countries, future IMT systems should be designed in a highly modular manner so that not all features have to be implemented in all networks.


Figure 2 illustrates some examples of envisioned usage scenarios for IMT for 2020 and beyond.

Reproduced by Data Dynamics in terms of Government Printers' Copyright Authority No. 9595 dated 24 September 1993

326 No. 42021

GOVERNMENT GAZETTE, 9 NOVEMBER 2018

ITU-R M.2083-0 21

No. 42021 327

ITU-R M.2083-0 22

16 5 Capabilities of IMT-2020

IMT for 2020 and beyond is expected to provide far more enhanced capabilities than those described in Recommendation ITU-R M.1645, and these enhanced capabilities could be regarded as new capabilities of future IMT. As ITU-R will give a new term IMT-2020 to those systems, system components, and related aspects that support these new capabilities, the term IMT-2020 is used in the following sections.

A broad variety of capabilities, tightly coupled with intended usage scenarios and applications for IMT-2020 is envisioned. Different usage scenarios along with the current and future trends will result in a great diversity/variety of requirements. The key design principles are flexibility and diversity to serve many different use cases and scenarios, for which the capabilities of IMT-2020, described in the following paragraphs, will have different relevance and applicability. In addition, the constraints on network energy consumption and the spectrum resource will need to be considered.

The following eight parameters are considered to be key capabilities of IMT-2020:

Peak data rate

Maximum achievable data rate under ideal conditions per user/device (in Gbit/s).

User experienced data rate

Achievable data rate that is available ubiquitously²³ across the coverage area to a mobile user/device (in Mbit/s or Gbit/s).

Latency

The contribution by the radio network to the time from when the source sends a packet to when the destination receives it (in ms).

Mobility

Maximum speed at which a defined QoS and seamless transfer between radio nodes which may belong to different layers and/or radio access technologies (multi-layer/-RAT) can be achieved (in km/h).

Connection density

Total number of connected and/or accessible devices per unit area (per km²).

Energy efficiency

Energy efficiency has two aspects:

²³ The term "ubiquitous" is related to the considered target coverage area and is not intended to relate to an entire region or country.

ITU-R M.2083-0 23

- on the network side, energy efficiency refers to the quantity of information bits transmitted to/ received from users, per unit of energy consumption of the radio access network (RAN) (in bit/Joule);
- on the device side, energy efficiency refers to quantity of information bits per unit of energy consumption of the communication module (in bit/Joule).

Spectrum efficiency

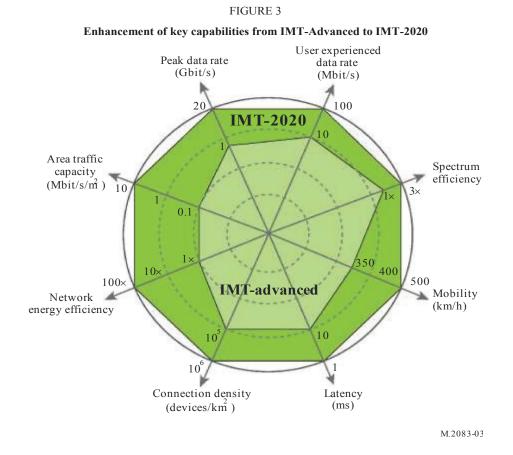
Average data throughput per unit of spectrum resource and per cell²⁴ (bit/s/Hz).

Area traffic capacity

Total traffic throughput served per geographic area (in Mbit/s/m²).

IMT-2020 is expected to provide a user experience matching, as far as possible, fixed networks. The enhancement will be realized by increased peak and user experienced data rate, enhanced spectrum efficiency, reduced latency and enhanced mobility support.

In addition to the conventional human-to-human or human-to-machine communication, IMT-2020 will realize the Internet of Things by connecting a vast range of smart appliances, machines and other objects without human intervention.


IMT-2020 should be able to provide these capabilities without undue burden on energy consumption, network equipment cost and deployment cost to make future IMT sustainable and affordable.

The key capabilities of IMT-2020 are shown in Fig. 3, compared with those of IMT-Advanced.

²⁴ The radio coverage area over which a mobile terminal can maintain a connection with one or more units of radio equipment located within that area. For an individual base station, this is the radio coverage area of the base station or of a subsystem (e.g. sector antenna).

No. 42021 329

ITU-R M.2083-0 24

The values in the Figure above are targets for research and investigation for IMT-2020 and may be further developed in other ITU-R Recommendations, and may be revised in the light of future studies. The targets are further described below.

The peak data rate of IMT-2020 for enhanced Mobile Broadband is expected to reach 10 Gbit/s. However under certain conditions and scenarios IMT-2020 would support up to 20 Gbit/s peak data rate, as shown in Fig. 3. IMT-2020 would support different user experienced data rates covering a variety of environments for enhanced Mobile Broadband. For wide area coverage cases, e.g. in urban and sub-urban areas, a user experienced data rate of 100 Mbit/s is expected to be enabled. In hotspot cases, the user experienced data rate is expected to reach higher values (e.g. 1 Gbit/s indoor).

The spectrum efficiency is expected to be three times higher compared to IMT-Advanced for enhanced Mobile Broadband. The achievable increase in efficiency from IMT-Advanced will vary between scenarios and could be higher in some scenarios (for example five times subject to further research). IMT-2020 is expected to support 10 Mbit/s/m² area traffic capacity, for example in hot spots.

The energy consumption for the radio access network of IMT-2020 should not be greater than IMT networks deployed today, while delivering the enhanced capabilities. The network energy efficiency should therefore be improved by a factor at least as great as the envisaged traffic capacity increase of IMT-2020 relative to IMT-Advanced for enhanced Mobile Broadband.

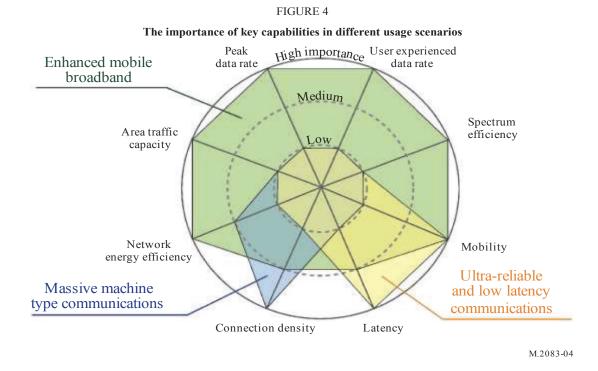
ITU-R M.2083-0 25

IMT-2020 would be able to provide 1 ms over-the-air latency, capable of supporting services with very low latency requirements. IMT-2020 is also expected to enable high mobility up to 500 km/h with acceptable QoS. This is envisioned in particular for high speed trains.

Finally, IMT-2020 is expected to support a connection density of up to 10⁶/km², for example in massive machine type communication scenarios.

The reference values for IMT-Advanced shown in Fig. 3 for the peak data rate, mobility, spectrum efficiency and latency are extracted from Report ITU-R M.2134. The Report this was published in 2008 and was used for the evaluation of IMT-Advanced candidate radio interfaces described in Recommendation ITU-R M.2012.

As anticipated above, whilst all key capabilities may to some extent be important for most use cases, the relevance of certain key capabilities may be significantly different, depending on the use cases/scenario. The importance of each key capability for the usage scenarios *enhanced Mobile Broadband*, *ultra-reliable and low latency communication* and *massive machine-type communication* is illustrated in Fig. 4. This is done using an indicative scaling in three steps as "high", "medium" and "low".


In the enhanced Mobile Broadband scenario, user experienced data rate, area traffic capacity, peak data rate, mobility, energy efficiency and spectrum efficiency all have high importance, but mobility and the user experienced data rate would not have equal importance simultaneously in all use cases. For example, in hotspots, a higher user experienced data rate, but a lower mobility, would be required than in wide area coverage case.

In some ultra-reliable and low latency communications scenarios, low latency is of highest importance, e.g. in order to enable the safety critical applications. Such capability would be required in some high mobility cases as well, e.g. in transportation safety, while, e.g. high data rates could be less important.

In the massive machine type communication scenario, high connection density is needed to support tremendous number of devices in the network that e.g. may transmit only occasionally, at low bit rate and with zero/very low mobility. A low cost device with long operational lifetime is vital for this usage scenario.

No. 42021 331

ITU-R M.2083-0 26

Other capabilities may be also required for IMT-2020, which would make future IMT more flexible, reliable, and secure when providing diverse services in the intended usage scenarios:

Spectrum and bandwidth flexibility

Spectrum and bandwidth flexibility refers to the flexibility of the system design to handle different scenarios, and in particular to the capability to operate at different frequency ranges, including higher frequencies and wider channel bandwidths than today.

Reliability

Reliability relates to the capability to provide a given service with a very high level of availability.

Resilience

Resilience is the ability of the network to continue operating correctly during and after a natural or man-made disturbance, such as the loss of mains power.

Security and privacy

Security and privacy refers to several areas such as encryption and integrity protection of user data and signalling, as well as end user privacy preventing unauthorized user tracking, and protection of network against hacking, fraud, denial of service, man in the middle attacks, etc.

Operational lifetime

Operational life time refers to operation time per stored energy capacity. This is particularly important for machine-type devices requiring a very long battery life (e.g. more

ITU-R M.2083-0 27

than 10 years) whose regular maintenance is difficult due to physical or economic reasons.

No. 42021 333

ITU-R M.2083-0 28

17 6 Framework and objectives

The objective of the development of IMT-2020 is to address the anticipated needs of users of mobile services in the years 2020 and beyond. The goals for the capabilities of IMT-2020 system described in § 5 are only targets for research and investigation and may be further developed in other ITU Recommendations, and may be revised in the light of future studies. This section provides relationships between IMT-2020 and existing IMT/other access systems, timelines and focus areas for further study as framework and objectives for the development of IMT-2020.

17.1 6.1 Relationships

17.1.1 6.1.1 Relationship between existing IMT and IMT-2020

In order to support emerging new scenarios and applications for 2020 and beyond, it is foreseen that development of IMT-2020 will be required to offer enhanced capabilities as those described in § 5. The values of these capabilities go beyond those described in Recommendation ITU-R M.1645. The minimum technical requirements (and corresponding evaluation criteria) to be defined by ITU-R based on these capabilities for IMT-2020 could potentially be met by adding enhancements to existing IMT, incorporating new technology components and functionalities, and/or the development of new radio interface technologies.

Furthermore, IMT-2020 will interwork with and complement existing IMT and its enhancements.

17.1.2 6.1.2 Relationship between IMT-2020 and other access systems

Users should be able to access services anywhere, anytime. To achieve this goal, interworking will be necessary among various access technologies, which might include a combination of different fixed, terrestrial and satellite networks. Each component should fulfil its own role, but also should be integrated or interoperable with other components to provide ubiquitous seamless coverage.

IMT-2020 will interwork with other radio systems, such as RLANs, broadband wireless access, broadcast networks, and their possible future enhancements. IMT systems will also closely interwork with other radio systems for users to be optimally and cost-effectively connected.

17.2 6.2 Timelines

In planning for the development of IMT-2020 as well as future enhancement of the existing IMT, it is important to consider the timelines associated with their realization, which depend on a number of factors:

- user trends, requirements and user demand;
- technical capabilities and technology development;
- standards development and their enhancement;

ITU-R M.2083-0 29

- spectrum matters;
- regulatory considerations;
- system deployment.

All of these factors are interrelated. The first five have been and will continue to be addressed within ITU. System development and deployment relates to the practical aspects of deploying new networks, taking into account the need to minimize additional infrastructure investment and to allow time for customer adoption of the services of a new system. ITU will complete its work for standardization of IMT-2020 no later than the year 2020 to support IMT-2020 deployment by ITU members expected from the year 2020 onwards.

The timelines associated with these different factors are depicted in Fig. 5. When discussing the phases and timelines for IMT-2020, it is important to specify the time at which the standards are completed, when spectrum would be available, and when deployment may start.

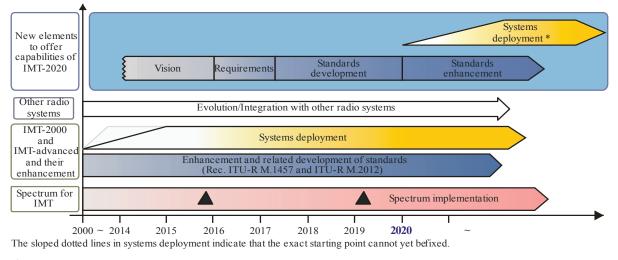


FIGURE 5

Phase and expected timelines for IMT-2020

: Possible spectrum identification at WRC-15 and WRC-19

* : Systems to satisfy the technical performance requirements of IMT-2020 could be developed beforyear 2020 in some countries. : Possible deployment around the year 2020 in some countries (including trial systems)

M.2083-05

17.2.1 6.2.1 Medium term

In the medium-term (up to about the year 2020) it is envisaged that the future development of IMT-2000 and IMT-Advanced will progress with the ongoing enhancement of the capabilities of the initial deployments, as demanded by the marketplace in addressing user needs and allowed by the status of technical developments. This phase will be dominated by the growth in traffic within the existing IMT spectrum, and the development of IMT-2000 and IMT-Advanced during this time will be distinguished by

No. 42021 335

ITU-R M.2083-0 30

incremental or evolutionary changes to the existing IMT-2000 and IMT-Advanced radio interface specifications (i.e. Recommendations ITU-R M.1457 for IMT-2000 and ITU-R M.2012 for IMT-Advanced, respectively).

It is envisaged that the bands identified by WRCs will be made available for IMT within this timeframe subject to user demand and other consideration.

17.2.2 6.2.2 Long term

The long term (beginning around the year 2020) is associated with the potential introduction of IMT-2020 which could be deployed around the year 2020 in some countries. It is envisaged that IMT-2020 will add enhanced capabilities described in § 5, and they may need additional frequency bands in which to operate.

ITU-R M.2083-0 31

17.3 6.3 Focus areas for further study

The research forums and other external organizations wishing to contribute to the future development of IMT-2020 are encouraged to focus especially in the following key areas:

- a) radio interface(s) and their interoperability;
- b) access network related issues;
- c) spectrum related issues;
- d) traffic characteristics.